Wi lmm m

API Guide

Assure Customer API

User Guide: Update Equipment Register data via
API

Evotix Ltd. Revision 2.0 (September 2024)

US +1(872) 215 5913 UK +44 (0) 1615218490 AU +61 3 8595 5909 Visit evotix.com

API Guide

EVOTIX

The Customer APl is available to customers via the public internet and takes the form of a
RESTful API. Using the Customer APl you can automate processes such as managing
users, org unit structure and exporting data for analysis. Making use of the Customer API
requires a level of technical expertise so this is typically something that a company’s IT
function would handle.

This guide focusses on how to set up the Customer API to update data in Equipment
Register in Assure. A separate guide is available for setting up the Customer API.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Contents
Managing Equipment Register Records via the Customer APIcccovvvvvnvervnnrcncnnnnes 4
LIMITALIONS ...ttt bbbt b bt b e Rt e s et b e b e e bt e bt b e e s e e n et et et e b e neenes 4
Pre-configuration for Equipment RegiSter RECOIUS..........coveiiiiiiieiiciccee e 4
Organisational Unit EXternal IDs..........iiiiiiininineneneinissississcscsesssssssssesssssssssssessens 4
e T Y= (U L= 6
Custom Mandatory Valuesiieieiniiininininenenssssssississisessesssssssssssssssssssssessesns 8
Equipment Register JSON POST OBJECT.........ciiiiiiiiiie e 9
Minimum EqQUIpMENt REQISTEN GALAcceiviiiiiiiiieie e 10
Equipment Register with everything defined............cccvvieiiiie i 11
Equipment Register JSON PATCH ODJECEoiveieiieiieie et 12
Creating an EqQUipmMeNnt REQISTEr RECOIU.........ciiiiiieieiiecieee et sreenae s 13
Updating an Equipment Register Record With POST reqUESEccceiveriiiiieiieii e 18
Partial update of an Equipment Register Record with PATCH requestcccccvevveveeveiiieieevieen, 22
Deleting an Equipment RegISter RECOIM............ccveiiiiiiiieiie ettt 25

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Another of the interactive methods available via the Customer APl is the ability to
manage Equipment Register Records in Assure.

This allows you to create, update and delete records within the Equipment Register
module.

Limitations

The following lists the current limitations of the API for editing and deleting Equipment
Register records. It is expected that these will be addressed in future Assure releases:

e The Equipment Register reference field cannot be changed via the API. You can only
create new records with a unique reference, or update records where there is an
existing record for the reference provided. If there are multiple records with the same
reference, the APl cannot identify which record is trying to be updated and it will error.

e The Equipment Register reference field cannot be automatically assigned by the
system when creating or updating records, it must be provided in the requests.

e Supporting items cannot be added via the API. This includes actions, attachments,
notes, reviews, and links to policies and guidance. If there are default reviewers and
approvers set up they will be automatically used on the creation of the record.

e Any default values set within the caption maintenance area are not taken into
consideration by the API.

Pre-configuration for Equipment Register Records

Organisational Unit External IDs

Where Organisational Units have been manually created in Assure (i.e. not via the
Customer API) there is some pre-configuration required in order to be able then use the
Customer APl methods. This is required for the APl methods to be able to correctly
assign Organisational Units to Equipment Register records.

This pre-configuration is only needed for Organisational Units which have been manually
added and which do not have an External ID set.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The Assure Organisational Unit hierarchy has a new attribute for each unit called ‘External
ID". You will find this in the ‘Edit’ page of an Organisational Unit and its purpose is to allow
a unique external identifier to be associated with each unit. This is necessary because:

1. The existing Organisational Unit names are not unique and therefore cannot be
used with an APl method to target a specific Organisational Unit.

2. Organisational Unit names can be changed by Assure administrative users so they
are not guaranteed to align with the customers IT systems (where user details are
being obtained from by the customers integration workflow).

3. Integration workflows should use the immutable unique identifier for Organisational
Units so that changes to names (whether in Assure or the source system) do not
break the integration workflow. This means Assure needs to be able to configure the
unique identifier against each Organisational Unit which is what the External ID field
does.

It is strongly recommended that a customer uses their own identifier external ID of an
Organisational Unit i.e. the identifier that their IT systems / source data uses for the
Organisational Unit (e.g. for a retailer this might be the Shop ID). This removes the need
for the customer to maintain a mapping between their Org Unit identifiers and the Assure
internal identifier for an Org Unit.

The external IDs for the Organisational Units can be configured manually using the Assure
Ul (screenshot below shows an example setting the Organisational Unit external ID for the
“North West region” to be REGION_NW). This is fine for testing but for ensuring that the
Organisational Unit hierarchy is in sync with the customers user management system we
have a bulk import/update tool which can be used.

w Details

Mame *

Detailz

External ID

The External ID must be unigue

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Picklist Values

For any of the fields in a Module record that has values that come from the ‘Picklist Data
Dictionary’ in Assure then the value provided in the APl request must match a value in the
‘Picklist Data Dictionary' for that field and can be in the customer's default language or
base system language (English-UK). For example, the ‘Locality’ field is a picklist value for
Modules. If you locate this value in the Assure Ul you will see the values that exist for the
field (see example in the screenshot below).

-
Locality
i Sort Mode Ti] Bulk Delete

Order Text
Index
0] Container
0 Office
0] Production
0 Reference Materials
0O Stores

If you have translations for the picklist value and the language is the same as the default
customer language this can also be supplied via APl. Example, in the screenshot below, if
the customer’s default language is in Croatian, then the value ‘OfficeCroatian’ can be
supplied via API. Validation is performed in the request to ensure that the ‘Locality’ field
takes only one of these values or no value. This is then the case for all picklist values.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

v Translations

Language Text

v Org Units

Picklist values can also be restricted by Org-Unit. Using the same example above in the
first screenshot the value ‘Office’ exists for the ‘Locality’ picklist dictionary value. Here you
can restrict ‘Office’ to only be allowed as a value for a specific org unit. This validation will
then work via APl as it would in Assure. Meaning that if you then try to create a Module
record with ‘Office’ as the 'Locality’ but the org unit supplied in the request is not for the
org unit 'Office’ was restricted to and so the request would fail. See the second screenshot
to see how this restriction can be set up.

The screenshot below shows how this restriction can be set up.

w Details

Text* i

Order®

Export Code

> Translations

w Org Units

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Custom Mandatory Values

In Assure you can set up custom mandatory values for each module, which are then
validated on creation and update of records in those modules. This validation is also
honoured by the API.

Any field that has been set to mandatory in Equipment Register records must be provided
in the APl request even if the schema does have it as a required field.

These fields are managed via caption maintenance in Assure. The example below shows
the set up to make ‘Location’ a mandatory field. The field must also have the ‘Display in
Interface’ selected for the mandatory validation to occur in the API.

v Details

Language [nglish (UK) "]

Property Name

Display Text*

Guidance Text

Guidance Text Display * @ Popup
O Static

Default Value

Is Mandatory

Display in Interface

(& save And Close

If a default value is set in caption maintenance, the APl does not currently take that into
consideration.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Equipment Register JSON POST object

When creating/updating an Equipment Register record the record’s details need to be
provided in the form of a JSON object. JSON is the most commonly used syntax for
describing data objects in RESTful APlIs, for an introduction to JSON see this guide. The
OpenAPI schema for the Customer API contains the formal definition of the JSON
structure i.e. the EquipmentPOSTRequest object. The OpenAPI schema is the master
definition of the APl methods and data objects, it should always be consulted to
understand the required fields, field types, max data lengths and string patterns, plus
descriptions of the behaviour associated with the use of each field (or its omission). Some
software tools and platforms can consume the OpenAPIl schema to automate the process
of generating the correct JSON and if this is available it should be used. To aid
understanding of how the JSON fields in the Equipment Register JSON object relate to the
resulting Equipment Register record setup in Assure the following sections contain some
worked examples.

The text encoding to be used for all interactions with the Customer APl is UTF-8. This is
pretty much the standard today for software tools and platforms however it is important
to check that you are using UTF-8 as if not then when you get foreign characters in the
data or other symbols like emoticons these will not appear correctly in Assure.

As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is VERY IMPORTANT to ensure that when generating JSON
objects to send to the Customer APl you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to APl errors and can also be a source of security
vulnerabilities.

© 2024 EVOTIX all rights reserved

https://www.w3schools.com/js/js_json_intro.asp

API Guide

EVOTIX

Minimum Equipment Register data

This example shows the minimum possible Equipment Register data which can be used
to create or update an Equipment Register record.

"reference": "exampleReference",
"orgUnitExternalId": "example.OrgUnit",
"equipmentName": "exampleEquipmentName",
"description": "exampleDescription"

w Details

Org Unit e

Reference * System Assigned

Is This Confidential [:]

Equipment Name *

Equipment Model

Description *

Serial Number

Asset Number

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Equipment Register with everything defined

This example shows the same Equipment Register record with everything defined.

"reference": "exampleReference",
"orgUnitExternalId": "example.OrgUnit",
"isConfidential": false,

"equipmentName": "exampleEquipmentName",
"model": "007",

"description": "exampleDescription",
"serialNumber": "2222",

"assetNumber": "5555",

"equipmentType": "exampleEquipmentType",
"isCEMarked": false,

"purchaseDate": "2024-03-18",

"location": "Grenada",

"locality": "exampleLocality",
"equipmentValue": 88.88,
"equipmentNotes": "exampleEquipmentNotes",
"informationLog": "exampleInformationLog"

v Details

Org Unit example OrgUnit

Reference * exampleReference System Assigned

Is This Confidential O

Equipmeant Name * exampleEquipmentiams

Equipment Model

Description*

Serial Number

Asset Number 5555
Equipment Type exampleBaquipmentType -
CE Mark O

Purchase Date 18/03/2024 @

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Location

Locality
Value

Notes

Infermation Log

Equipment Register JSON PATCH Object

When sending a patch request to update equipment register record’s details they need
to be provided in the form of a JSON object. JSON is the most commonly used syntax for
describing data objects in RESTful APIs, for an introduction to JSON see this guide. The
OpenAPI schema for the Customer API contains the formal definition of the JSON
structure i.e. the equipmentPATCHRequestobject. The OpenAPI schema is the master
definition of the APl methods and data objects, it should always be consulted to
understand the required fields, field types, max data lengths and string patterns, plus
descriptions of the behaviour associated with the use of each field (or its omission).
Some software tools and platforms can consume the OpenAPIl schema to automate the
process of generating the correct JSON and if this is available it should be used.

The below section of JSON shows all the fields in the Equipment JSON PATCH Object.
The object contains almost all the same fields as the JSON POST object but it does not
contain the reference field, which is only present in the URL request itself.

© 2024 EVOTIX all rights reserved

https://www.w3schools.com/js/js_json_intro.asp

API Guide

EVOTIX

"orgUnitExternalId": "example.orgUnitExternalId",
"isConfidential": true,

"equipmentName": "example.equipmentName",
"model": "example.model",

"description": "example.description",
"serialNumber": "0123456",

"assetNumber": "987654",

"equipmentType": "example.equipmentType",
"isCEMarked": true,

"purchaseDate": "YYYY-MM-DD",

"location": "example.",

"locality": "example.locality",
"equipmentValue": 10000000000000000,
"equipmentNotes": "example.equipmentNotes",
"informationLog": "example.informationLog"

The text encoding required for all interactions with the Customer API is UTF-8. Although
UTF-8 is widely recognized as the standard for contemporary software tools and
platforms, it is imperative to verify its usage. Failure to do so may result in the incorrect
display of foreign characters or symbols, such as emoticons, within Assure.

As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is VERY IMPORTANT to ensure that when generating JSON
objects to send to the Customer API you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to API errors and can also be a source of
security vulnerabilities.

Creating an Equipment Register Record

The Customer API allows the creation of Equipment Register records in Assure using the
/vi/equipment APl method with the POST verb. The Equipment Register record’s details are
supplied in the body of the API request using the Equipment Register JSON object (see
section above). Records are uniquely identified by their reference which is the value in the
reference field of the Equipment Register JSON object. If there are no Equipment Register
records for the reference provided in the request then the /vi/equipment APl method will
create the record using the details in the Equipment Register JSON object.

If there is an existing Equipment Register record for the external ID then the /vi/equipment
APl method will update the existing Equipment Register record to match the supplied
details (see the ‘Update an Equipment Register’ section below for details on the behaviour
when updating an existing Equipment Register record). Note: If there are multiple

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Equipment Register records with the same reference that is provided in the request this
will result in an error response (HTTP error 409).

Before attempting to use the /vi/equipment APl method make sure you understand the
Equipment Register JSON object (see the section above) and that you have the required
details to access the API (i.e. the URL prefix, API key, etc), follow the Getting Started guide
if you don’t have these details already. The following table sections show how to create a
Equipment Register record using the /vi/equipment APl method in a variety of software
tools / platforms:

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may change).
Implement effective error handling as per the guide for error handling.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The screenshot below shows a successful ‘create Equipment Register
record’ request for a customer. The API key is supplied via the
‘Authorization’ tab (see the Getting Started guide for how to setup the API
key). The response section at the bottom shows the result Status: 200 OK
which indicates that the record’s creation was successful (also displayed is
the response message from the Customer API confirming the successful
creation).

NB: With tools like this where the Equipment Register JSON object is
manually entered you must ensure the contents of any string values are
properly escaped.

Params Auth Headers (12) Body & Scripts e Settings

raw v JSON

POStman 2 "reference": 'exar’l:'_eFEe:'a:E":.:‘i“,
API 3 "prgUnitExternalld”; “"example.OrgUnit™,
4 "izConfidential": false,
platform 5 "eguipmentNams": "exampleEquipmentName",
& "model”:- "BOT",
7 "d iption”: "exampleDescription",
8 "se "2222",
g " ex": "BEEE"
16 exampleEquipmentType",
11 ": false,
12 =" "2024-@3-13",
13 Grenada",
14 examplelocality”,
15 "eguipmentValus"; 88.88,
16 "eguipmentNotes": “exampleEguipmentNotes",
17 "informationLog": "exampleInformationLog"”
13 I
Body Cookies gaders (10) Test Results {f‘: 200 OK 1
Pretty Raw Preview Visualize o JSON v =
1 4
2 mEssage [
3 'Equipment Register record successfully created.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The code block below shows the few lines of PowerShell script required to setup the
Equipment Register Object JSON and to make the ‘create equipment register record’
request to the Customer API for a customer. The
XXXXXXXXXXXXXXXXKX XXX XXXXXXXXXXXXXXXXXXXX is where the APl key needs to be

placed.

$EquipmentObjectJSON = @{
"reference” = "example.Reference’,
"orgUnitExternalld" = "example.orgUnitExternalld",
"equipmentName" = "exampleEquipmentName”,
"description” = "exampleDescription’,
"assetNumber” ="5555"

} | ConvertTo-Json
Invoke-WebRequest *

WindOWS -Headers @{'x-api-key" = "XXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXX}
-Uri https://api.elephant.sheassure.net/vl/equipment
Powershell | -Method Post*

-ContentType 'application/json’
-Body $EquipmentObjectJSON

The following shows the output from the above PowerShell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the create
Equipment Register request was successful. Some response lines have been removed for
brevity.

StatusCode :200
StatusDescription : OK
Content : {"message""Equipment Register record successfully created."}

© 2024 EVOTIX all rights reserved

EVOTIX

API Guide

Python

The code block below shows the few lines of Python code required to setup the
Equipment Register Object JSON and to make the ‘create equipment register’ request to
the Customer API for a customer. The
XXXXXXXXXXXXXXXXKX XXX XXXXXXXXXXXXXXXXXXXX is where the APl key needs to be
placed.

pip install requests

import requests

equipment_object = {
"reference”: "example.Reference”,
"orgUnitExternalld™ "example.orgUnitExternalld’,
"equipmentName": "exampleEquipmentName’,
"description™ "exampleDescription’,
"assetNumber": "5555"

}

headers = { "x-api-key": "XXX"}

r = requests.post("https://api.elephant.sheassure.net/vl/equipment’, headers=headers, json = equipment_object)

r.raise_for_status()

print(f"StatusCode={r.status_code}")

print(f'Body={r.content}")
The following shows the output from the above Python code being run where a successful

response is generated. The StatusCode=200 indicates that the equipment register record
creation was successful.

StatusCode=200
Body=b'{"message": "Equipment Register record successfully created."}'

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Updating an Equipment Register Record with POST request

The Customer API allows the updating of Equipment Register records in Assure using the
/vi/equipment APl method with the POST verb. The Equipment Register record details are
supplied in the body of the API request using the Equipment Register JSON object (see
section above). Equipment Register records are identified by their reference, which is the
value in the reference field of the Equipment Register JSON object. If there is an existing
Equipment Register record for the reference provided then the /vi/equipment APl method
will update the existing Equipment Register record to match the supplied details (see the
‘Update an Equipment Register record’ section below for details on the behaviour when
updating an existing Equipment Register record). Note: If there are multiple Equipment
Register records with the same reference that is provided in the request this will result in
an error response (HTTP error 409).

If there are no Equipment Register records for the reference then the /vi/equipment API
method will create the Equipment Register record using the details in the Equipment
Register JSON object (see the ‘Create an Equipment Register record’ section above for
details on the behaviour when creating an Equipment Register record).

Before attempting to use the /vi/equipment APl method make sure you understand the
Equipment Register JSON object (see the section above) and that you have the required
details to access the API (i.e. the URL, API key, etc), follow the Getting Started guide if you
don’t have these details already. The following table sections show how to update an
Equipment Register record using the /vi/equipment APl method in a variety of software
tools / platforms:

Partial updates are not supportedwith a POST request. If you wish to perform a Partial
Update please see the section Partial update of an Equipment register record with PATCH
request.

If you try to update a record with using the POST request Assure will update the
equipment register record to match the details supplied, this includes applying the default
values for any fields that are not provided in the equipment Register JSON POST object.
See the OpenAPI schema for details of how the equipment register data will be defaulted
for each field.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may change).
Implement effective error handling as per the guide for error handling.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The screenshot below shows a successful ‘update Equipment Register’ request for a
customer on the wolf stack (NB: the Postman setup is identical to that used for creating a
Equipment Register record). The API key is supplied via the ‘Authorization’ tab (see the
Getting Started guide for how to setup the API key). The response section at the bottom
shows the result Status: 200 OK which indicates that the Equipment Register update was
successful (also displayed is the response message from the Customer API confirming the
successful update).

NB: With tools like this where the Equipment Register JSON object is manually entered you
must ensure the contents of any string values are properly escaped.

Params Auth Headers (12) Body ® Scripts e Settings

raw v JSOM ~

2 "reference": "exampleReference”,
3 "orgUnitExternalId”: "example.0rglnit”,
4 "izConfidential”: false,
POStman 5 "eguipmentName” : - "exampleEguipmentName”,
API & "model": "@07",
7 "de iption”: "exampleDescription",
platform 3 "serialNumber™: "2222",
9 as 5RER",
18 "equipmentType”: “exampleEquipmentType",
11 "isCEMar ": false,
12 28924-03-18",
13
14 "locality™: "examplelocality"”,
15 "eguipmentValue": 88.88,
16 "equipmentNotes": "exampleEquipmentNotes”,
17 "informationLog": "exampleInformationLog”
18
Body Cookies Headers (10) Test Results & 2000k 697s 419B [
Pretty Raw Preview Visualize » JSON =
1 q
2 "message”: [
3 "Equipment Register record successfully updated.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The code block below shows the few lines of PowerShell script required to setup the
Equipment Register Object JSON and to make the ‘'update Equipment Register’ request to
the Customer API for a customer (NB: this is identical to the script for creating an
Equipment Register record). The XXX is
where the APl key needs to be placed.

$EquipmentObjectJSON= @{

"reference” = "example.Reference’,
"orgUnitExternalld” = "example.orgUnitExternalld"”,
"equipmentName” = "exampleEquipmentName",
"description” = "exampleDescription’,
"assetNumber” ="5555"

} | ConvertTo-Json

. Invoke-WebRequest *

Windows -Headers @{x-api-key' = XXX} >
Powershell -Uri https://api.elephant.sheassure.net/vl/equipment

-Method Post *

-ContentType ‘application/json""

-Body $EquipmentObjectJSON®

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the update an
Equipment Register record request was successful. Some response lines have been
removed for brevity.

StatusCode 1200
StatusDescription : OK
Content : {"message""Equipment Register record updated.}

© 2024 EVOTIX all rights reserved

EVOTIX

API Guide

Python

The code block below shows the few lines of Python code required to setup the Equipment
Register Object JSON and to make the ‘update Equipment Register’ request to the
Customer API for a customer (NB: this is identical to the script for creating an Equipment
Register record). The XXX is where the API
key needs to be placed.

pip install requests

import requests

equipment_object= {
"reference”: "example.Reference’,
"orgUnitExternalld™ "example.orgUnitExternalld”,
"equipmentName": "exampleEquipmentName”,
“"description”: "exampleDescription”,
"assetNumber": "5555"

}

headers = { "x-api-key": "XXX"}

r = requests.post('https://api.elephant.sheassure.net/vl/equipment’, headers=headers, json = equipment_object)

r.raise_for_status()

print(f"StatusCode={r.status_code}")

print(f'Body={r.content}")
The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the Equipment Register update

was successful.

StatusCode=200
Body=b'{"message": "Equipment Register record updated."}'

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

Partial update of an Equipment Register Record with PATCH
request

The Customer API allows the partial update of equipment register records in Assure using
the /vl/equipment/{reference} API method with the PATCH verb. A PATCH request will
only update the fields provided in the request and any other fields will remain unchanged.

The record that will be updated will be identified by its reference provided from the
{reference} path parameter. The equipment register record details to be updated are
supplied in the body of the API request using the equipment register JSON PATCH object.
If there is an existing equipment register record for the reference provided then the
/vi/equipment/{reference}API method will update the existing equipment register record
with the supplied details. Note: If there are multiple equipment register records with the
same reference that is provided in the request this will result in an error response (HTTP
error 409). Additionally if there is no equipment register record with the reference that is
provided in the request this will result in an error response (HTTP error 404).

Before attempting to use the /vl/equipment/{reference} APl method make sure you
understand the equipment register JSON PATCH object (see the section above) and that
you have the required details to access the API (i.e. the URL, API key, etc), follow the
Getting Started guide if you don't have these details already. The following table sections
show how to perform a partial update an equipment register record using the
/vi/equipment/{reference} APl method in a variety of software tools / platforms.

Note. All examples shown below are for a partial update of the ‘equipmentType’ and
‘equipmentValue’, any other field in the JSON PATCH object can also be used for a partial
update.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change). Implement effective error handling as per the guide for error handling.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

The screenshot below shows a successful ‘partial update of an equipment register record’
request for a customer on the uk2 stack (NB: the Postman setup is identical to that used for
creating an equipment register record). The API key is supplied via the ‘Authorization’ tab
(see the Getting Started guide for how to setup the APl key).

Update Equipment Register

https:f/localhost:44369/equipment/TestRef-0002

Postman Body
API form-data x-www-form-urlencoded @ raw binary GraphQL
platform

‘eguipment

‘equipmentValue”: 1.66

NB: With tools like this where the Equipment Register JSON Patch object is manually entered
you must ensure the contents of any string values are properly escaped. Also the numbers
must be correctly formatted (specially with decimals).

© 2024 EVOTIX all rights reserved

EVOTIX

API Guide

Windows
Powersh
ell

The code block below shows the few lines of Powershell script required to setup a partial
update using the Equipment Register Object Patch JSON. It also shows how to make the
Patch partial update request to the Customer API for a customer on the uk2 stack. The
XXXXXXXXXXXXXXXXKX XXX XXXXXXXXXXXXXXXXXXXX is where the APl key needs to be
placed.

IMPORTANT - Note the use of [System.Net.WebUtility]:Ur[Encode to ensure that the
reference value is properly escaped for inclusion in the URL.

$EquipmentObjectJSON = @{
"equipmentType" = "example.equipmentType",
"equipmenValue” = "example.equipmentValue",
} | ConvertTo-Json
Invoke-WebRequest *
-Headers @{'x-api-key' = "XXX'} ™
-Uri https://api.uk2.sheassure.net/vl/equipment/ + [System.Net.WebUtility]:UrlEncode("example?reference")
-Method Patch *
-ContentType "application/json’"

-Body $EquipmentObjectJSON"

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the update an
Equipment Register record request was successful. Some response lines have been removed
for brevity.

StatusCode 1200
StatusDescription : OK
Content : {"message""Equipment Register updated.'}

© 2024 EVOTIX all rights reserved

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode

API Guide

EVOTIX

The code block below shows the few lines of Python code required to setup the Equipment
Register JSON PATCH Object and to make the ‘update equipment register’ request to the
Customer API for a customer on the uk2 stack (NB: this is identical to the script for creating a
equipment register record). The XXX is
where the APl key needs to be placed.

pip install requests

pip install urllib

import requests

import urllib

equipment_register_object = {
"equipmentType" = "example.equipmentType”,
"equipmenValue” = "example.equipmentValue”,

}

headers = { "x-api-key": "XXX"}

url = "https://api.uk2.sheassure.net/vl/equipment/" + urllib.parse.quote('example.reference’, safe=")

r = requests.patch(url, headers=headers, json = equipment_register_object)

r.raise_for_status()

print(f'StatusCode={r.status_code}")

Python

print(f'Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the Equipment Register update
was successful.

StatusCode=200
Body=b'{"message": "Equipment Register updated."}'

Deleting an Equipment Register Record

The Customer API allows the deletion of Equipment Register records in Assure using the
/vi/equipment /{reference} APl method with the DELETE verb. The record will be identified by
its reference provided from the {reference} path parameter. The Equipment Register
Object is NOT required for this method.

If there is no Equipment Register record for the reference provided then the
/V1/equipment/{reference} APl method will still return a successful response (i.e. HTTP status
code in the range 200-299).

Before attempting to use the /vi/equipment/{reference} APl method make sure you have the
required details to access the API (i.e. the URL, API key, etc), follow the Getting Started
guide if you don't have these details already. The following table sections show how to

© 2024 EVOTIX all rights reserved

API Guide

EVOTIX

delete an Equipment Register record using the /vl/equipment/{reference} APl method in a
variety of software tools / platforms:

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may change).
Implement effective error handling as per the guide for error handling.

IMPORTANT - The login user name value needs to have URL escaping applied before
inclusion in the URL.

The screenshot below shows a successful ‘delete Equipment Register record’ request for a
customer. Note the use of the ‘Authorization’ tab to configure the APl key header. The
XXXXXXXXXXKXXK XX XXX XXX XXX XXXXXXX value is where the API key would be placed. The
response section at the bottom shows the result Status: 200 OK which indicates that the
record was successfully disabled (also displayed is the response message from the
Customer API confirming the successful disable).

NB: With tools like this where the Equipment Register JSON object is manually entered you
must ensure the contents of any string values are properly escaped.
Postman

API
platform

© 2024 EVOTIX all rights reserved

EVOTIX

API Guide

The code block below shows the few lines of Powershell script required to make the ‘delete
Equipment Register record’ request to the Customer API for a customer. The
XXXXXXXXXXKXXXXXKXXXKXXXXKXXXXXXXXXXXXXXXXX is where the APl key needs to be
placed.

IMPORTANT - Note the use of [System.Net.WebUtility]:Url[Encode to ensure that the
reference value is properly escaped for inclusion in the URL.

Windows $URL = "https://api.elephant.sheassure.net/vl/equipment/" + [System.Net.WebUstility]:UrlEncode("example?reference”
Invoke-WebRequest ~

Powersh -Headers @{x-api-key' = XXX}

ell -Uri $URLEscaped *

-Method Delete *

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the disable Equipment
Register request was successful. Some response lines have been removed for brevity.
StatusCode :200
StatusDescription : OK
Content : {"message": "Equipment Register record successfully deleted."}
The code block below shows the few lines of Python code required to make the ‘delete
Equipment Register record’ request to the Customer API for a customer. The
XXXXXXXXXXKXXXXXKXXXXKXXXXKXXXXXXXXXXXXXXXXX is where the APl key needs to be
placed.
IMPORTANT - Note the use of urllib.parse.quote to ensure that the reference value is
properly escaped for inclusion in the URL.
pip install requests
pip install urllib
import requests
import urllib

Python url = "https://api.elephant.sheassure.net/vl/equipment/" + urllib.parse.quote('example.reference’, safe=")

headers = { "x-api-key": "XXX"}
r = requests.delete(url, headers=headers)

r.raise_for_status()

print(f"'StatusCode={r.status_code}")

print(f'Body={r.content}")
The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the Equipment Register delete

was successful.

StatusCode=200
Body=b'{"message": "Equipment Register record successfully deleted."}'

© 2024 EVOTIX all rights reserved

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode
https://docs.python.org/3/library/urllib.parse.html

API Guide

EVOTIX

© 2024 EVOTIX all rights reserved

	Managing Equipment Register Records via the Customer API
	Limitations
	Pre-configuration for Equipment Register Records
	Organisational Unit External IDs
	Picklist Values
	Custom Mandatory Values

	Equipment Register JSON POST object
	Minimum Equipment Register data
	Equipment Register with everything defined
	Equipment Register JSON PATCH Object
	Creating an Equipment Register Record
	Updating an Equipment Register Record with POST request
	Partial update of an Equipment Register Record with PATCH request
	Deleting an Equipment Register Record

