

API Guide

US +1 (872) 215 5913 AU +61 3 8595 5909 UK +44 (0) 161 521 8490 Visit evotix.com

Assure Customer API
User Guide: Update the Person Register via API

Evotix Ltd. Revision 4.0 (March 2025)

© 2024 EVOTIX all rights reserved Page 2

API Guide

The Assure Customer API is the means by
which Evotix provides integration ‘capability to
Assure for customers.

The Customer API is available to customers via the public internet and takes the form of a
RESTful API. Using the Customer API you can automate processes such as managing
users, org unit structure and exporting data for analysis. Making use of the Customer API
requires a level of technical expertise so this is typically something that a company’s IT
function would handle.

This guide focusses on how to set up the Customer API to update the person register in
Assure. A separate guide is available for setting up the Customer API.

© 2024 EVOTIX all rights reserved Page 3

API Guide

Contents

Managing Person Register Records via the Customer API ... 4

Limitations .. 4

Pre-configuration for Person Register Records .. 4

Organisational Unit External IDs .. 4

Picklist Values... 6

Custom Mandatory Values ... 8

Person Register JSON object .. 8

Minimum Person Register data ... 9

Person Register record with next of kin details .. 10

Person Register record with linked user ... 12

Person Register record with training ... 13

Person Register record with everything defined ... 15

Person Register JSON PATCH object .. 18

Creating a Person Register Record ... 20

Updating a Person Register Record with POST request ... 24

Partial update of a Person Register Record with PATCH request .. 26

Deleting a Person Register Record ... 30

© 2024 EVOTIX all rights reserved Page 4

API Guide

Managing Person Register Records via the
Customer API
Another of the interactive methods available via the Customer API is the ability to
manage Person Register Records in Assure.

This allows you to create, update and delete records within the Person Register
module.

Limitations

The following lists the current limitations of the API for editing and deleting Person
Register records. It is expected that these will be addressed in future Assure releases:

• The Person Register reference field cannot be changed via the API. You can only create
new records with a unique reference, or update records where there is an existing
record for the reference provided.

• The Person Register reference field cannot be automatically assigned by the system
when creating or updating records, it must be provided in the requests.

• Supporting items cannot be added via the API. This includes actions, attachments,
notes, reviews, and links to policies and guidance. If there are default reviewers and
approvers set up they will be automatically used on the creation of the record.

• It is not possible to add Project records to Person Register records in the Project Links
section, via the API. Any Project records will need to be linked manually.

• Any default values set within the caption maintenance area are not taken into
consideration by the API.

Pre-configuration for Person Register Records

Organisational Unit External IDs

Where Organisational Units have been manually created in Assure (i.e. not via the
Customer API) there is some pre-configuration required in order to be able then use the
Customer API methods. This is required for the API methods to be able to correctly
assign Organisational Units to Person Register records.

© 2024 EVOTIX all rights reserved Page 5

API Guide

This pre-configuration is only needed for Organisational Units which have been manually
added and which do not have an External ID set.

The Assure Organisational Unit hierarchy has a new attribute for each unit called ‘External
ID’. You will find this in the ‘Edit’ page of an Organisational Unit and its purpose is to allow
an unique external identifier to be associated with each unit. This is necessary because:

1. The existing Organisational Unit names are not unique and therefore cannot be
used with an API method to target a specific Organisational Unit.

2. Organisational Unit names can be changed by Assure administrative users so they
are not guaranteed to align with the customers IT systems (where user details are
being obtained from by the customers integration workflow).

3. Integration workflows should use the immutable unique identifier for Organisational
Units so that changes to names (whether in Assure or the source system) do not
break the integration workflow. This means Assure needs to be able to configure the
unique identifier against each Organisational Unit which is what the External ID field
does.

It is strongly recommended that a customer uses their own identifier external ID of an
Organisational Unit i.e. the identifier that their IT systems / source data uses for the
Organisational Unit (e.g. for a retailer this might be the Shop ID). This removes the need
for the customer to maintain a mapping between their Org Unit identifiers and the Assure
internal identifier for an Org Unit.

The external IDs for the Organisational Units can be configured manually using the Assure
UI (screenshot below shows an example setting the Organisational Unit external ID for the
“North West region” to be REGION_NW). This is fine for testing but for ensuring that the
Organisational Unit hierarchy is in sync with the customers user management system we
have a bulk import/update tool which can be used.

© 2024 EVOTIX all rights reserved Page 6

API Guide

Picklist Values

For any of the fields in a Module record that has values that come from the ‘Picklist Data
Dictionary’ in Assure then the value provided in the API request must match a value in the
‘Picklist Data Dictionary' for that field and can be in the customer's default language or
base system language (English-UK). For example, the ‘Locality' field is a picklist value for
Modules. If you locate this value in the Assure UI you will see the values that exist for the
field (see example in the screenshot below

Picklist values can also be restricted by Org-Unit. Using the same example above in the
first screenshot the value ‘Office' exists for the ‘Locality’ picklist dictionary value. Here you
can restrict ‘Office’ to only be allowed as a value for a specific org unit. This validation will
then work via API as it would in Assure. Meaning that if you then try to create a Module
record with ‘Office’ as the 'Locality’ but the org unit supplied in the request is not for the
org unit 'Office’ was restricted to and so the request would fail. See the second screenshot
to see how this restriction can be set up.

© 2024 EVOTIX all rights reserved Page 7

API Guide

If you have translations for the picklist value and the language is the same as the default
customer language this can also be supplied via API. Example, in the screenshot below, if
the customer’s default language is in Croatian, then the value ‘OfficeCroatian’ can be
supplied via APPI. Validation is performed in the request to ensure that the 'Locality’ field
takes only one of these values or no value. This is then the case for all picklist values.

© 2024 EVOTIX all rights reserved Page 8

API Guide

Custom Mandatory Values

In Assure you can set up custom mandatory values for each module, which are then
validated on creation and update of records in those modules. This validation is also
honoured by the API.

Any field that has been set to mandatory in Person Register records must be provided in
the API request even if the schema does have it as a required field.

These fields are managed via caption maintenance in Assure. The example below shows
the set up to make ‘Job Title a mandatory field. The field must also have the ‘Display in
Interface’ selected for the mandatory validation to occur in the API.

If a default value is set in caption maintenance, the API does not currently take that into
consideration.

Person Register JSON object

When creating and updating a Person Register record the records details need to be
provided in the form of a JSON object. JSON is the most commonly used syntax for
describing data objects in RESTful APIs.

© 2024 EVOTIX all rights reserved Page 9

API Guide

The OpenAPI schema for the Customer API contains the formal definition of the JSON
structure i.e. the personRegisterPOSTRequestobject.

The OpenAPI schema is the master definition of the API methods and data objects, it
should always be consulted to understand the required fields, field types, max data
lengths and string patterns, plus descriptions of the behaviour associated with the use of
each field (or its omission). Some software tools and platforms can consume the OpenAPI
schema to automate the process of generating the correct JSON and if this is available it
should be used. To aid understanding of how the JSON fields in the Person Register JSON
object relate to the resulting Person Register record setup in Assure the following sections
contain some worked examples.

The text encoding to be used for all interactions with the Customer API is UTF-8. This is
pretty much the standard today for software tools and platforms however it is important
to check that you are using UTF-8 as if not then when you get foreign characters in the
data or other symbols like emoticons these will not appear correctly in Assure.

As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is very important to ensure that when generating JSON
objects to send to the Customer API you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to API errors and can also be a source of security
vulnerabilities.

Minimum Person Register data

This example shows the minimum possible Person Register data which can be used to
create or update a Person Register record,

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit"
}

https://github.com/Evotix/public-assure-customerapi

© 2024 EVOTIX all rights reserved Page 10

API Guide

Further Person Register details omitted for brevity as they will all be the defaults.

Person Register record with next of kin details

This example shows the same Person Register record with next of kin details.

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit",
 "nextOfKin":
 {
 "name": "NextOfKin.Name",
 "address1" : "NextOfKin.Address1",
 "address2" : "NextOfKin.Address2",
 "address3" : "NextOfKin.Address3",
 "town" : "NextOfKin.Town",
 "county": "NextOfKin.County",
 "postcode": "NextOfKin.Postcode",
 "phone" : "NextOfKin.Phone",
 "relationship": "NextOfKin.Relationship",
 "mobile" : "NextOfKin.Mobile",
 "email": "NextOfKin@evotix.com",
 "notes" : "NextOfKin.Notes",
 "additionalfield1" : "additionalField1",
 "additionalfield2" : "additionalField2"
 }
}

© 2024 EVOTIX all rights reserved Page 11

API Guide

The Person Register Record details will be the same as the ‘minimum Person Register
data’ screen shot above. The difference in this case is that the next of kin details are
included in the Next of Kin section.

© 2024 EVOTIX all rights reserved Page 12

API Guide

Person Register record with linked user

This example shows the same Person Register record with a linked user.

In order to link a Person Register record with a User, you must have the feature enabled in
System Settings.

In order to link a User to a Person Register record, the request will include the same fields
as in the ‘minimum person register data’ section, but it will also require the
‘linkedUsername' field and in the 'email’ field. The email must be a unique email.

Note: the values in the email and name fields (forename and surname) values will also
update the linked Users email and full name to match.

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit",
 "linkedUsername": "example.apiuser",
 "email" : "example.apiuser@evotix.com",
}

© 2024 EVOTIX all rights reserved Page 13

API Guide

Person Register record with training

This example shows the same Person Register record with the training section defined.

The training section allows for a Training Needs Analysis record (TNA) to be created on
the creation of a Person Register Record via the post endpoint. This section is only
relevant on creation of a person record. It is not possible to create a TNA record when
editing a person record, nor is it possible to edit the record from this endpoint. If you
provide this section in an update request and set ‘createTrainingNeedsAnalysis' to be
'true’ an error will be returned.

The training and TNA Template modules must be enabled in order to create training
records via this endpoint.

To create a training record, the TNA template reference provided in the
'trainingNeedsAnalysisReference' field must be unique. It is not possible to create a
training record when the reference provided belongs to multiple TNA templates.
note. In the UI the ‘Qualification’ field has the course name and not the reference
displayed. For the API you must provide the reference.

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit",
 "training" : {
 "createTrainingNeedsAnalysis" : true,
 "trainingNeedsAnalysisReference" : "example.tnaReference",
 "overwriteRenewedByDate": "2021-01-01"
 }
}

© 2024 EVOTIX all rights reserved Page 14

API Guide

© 2024 EVOTIX all rights reserved Page 15

API Guide

Person Register record with everything defined

This example shows the same Person Register record with all the possible fields defined.

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit",
 "linkedUsername": "example.apiuser",
 "email" : "evotix@evotix.com",
 "iscurrent" : true,
 "DateOfBirth" : "1998-01-01",
 "Title" : "example.Title",
 "JobTitle" : "example.JobTitle",
 "isConfidential": true,
 "maritalStatus": "example.maritalStatus",
 "niNumber": "example.niNumber",
 "nationality": "example.nationality",
 "dateOfHire": "2023-05-01",
 "shift": "example.shift",
 "occupation": "example.occupation",
 "phone": "example.ManagerPhone",
 "mobile": "example.ManagerMobile",
 "typeOfPerson": "example.typeOfPerson",
 "managerName": "example.managerName",
 "managerPhone": "example.managerPhone",
 "ageRange": "example.ageRange",
 "address1": "example.address1",
 "address2": "example.address2",
 "address3": "example.address3",
 "town" : "example.town",
 "county": "example.county",
 "postcode": "example.postcode",
 "location": "example.location",
 "locality" : "example.locality",
 "nextOfKin":
 {
 "name": "NextOfKin.Name",
 "address1" : "NextOfKin.Address1",
 "address2" : "NextOfKin.Address2",
 "address3" : "NextOfKin.Address3",
 "town" : "NextOfKin.Town",
 "county": "NextOfKin.County",
 "postcode": "NextOfKin.Postcode",
 "phone" : "NextOfKin.Phone",
 "relationship": "NextOfKin.Relationship",
 "mobile" : "NextOfKin.Mobile",
 "email": "NextOfKin@evotix.com",
 "notes" : "NextOfKin.Notes",
 "additionalfield1" : "additionalField1",
 "additionalfield2" : "additionalField2"
 }
}

© 2024 EVOTIX all rights reserved Page 16

API Guide

It is not necessary to set all the fields when creating or updating a Person Register record.
Any of the fields which are not required can be omitted in which case the default value
for the field will be applied. See the description against each field in the OpenAPI schema
for details of the default behaviour.

The Person Register record next of kin details will be the same as the screenshot above.

https://github.com/Evotix/public-assure-customerapi

© 2024 EVOTIX all rights reserved Page 17

API Guide

© 2024 EVOTIX all rights reserved Page 18

API Guide

Person Register JSON PATCH object

When sending a patch request to update a person register record details they need to be
provided in the form of a JSON object. JSON is the most commonly used syntax for
describing data objects in RESTful APIs, for an introduction to JSON see this guide. The
OpenAPI schema for the Customer API contains the formal definition of the JSON
structure i.e. the personRegisterPATCHRequestobject. The OpenAPI schema is the master
definition of the API methods and data objects, it should always be consulted to
understand the required fields, field types, max data lengths and string patterns, plus
descriptions of the behaviour associated with the use of each field (or its omission).

Some software tools and platforms can consume the OpenAPI schema to automate the
process of generating the correct JSON and if this is available it should be used.

The below section of JSON shows all the fields in the Person Register JSON PATCH
Object.

Note. The object contains almost all the same fields as the JSON POST object but it does
not contain the reference field in the body or the training section. It does not include the
training section as a training record cannot be edited or created on update of a Person
Register record.

https://www.w3schools.com/js/js_json_intro.asp

© 2024 EVOTIX all rights reserved Page 19

API Guide

The text encoding to be used for all interactions with the Customer API is UTF-8. This is
pretty much the standard today for software tools and platforms however it is important

{
 "forename": "example.forename",
 "surname": "example.surname",
 "reference" : "example.ApiReference",
 "orgUnitExternalId" : "example.OrgUnit",
 "linkedUsername": "example.apiuser",
 "email" : "evotix@evotix.com",
 "iscurrent" : true,
 "DateOfBirth" : "1998-01-01",
 "Title" : "example.Title",
 "JobTitle" : "example.JobTitle",
 "isConfidential": true,
 "maritalStatus": "example.maritalStatus",
 "niNumber": "example.niNumber",
 "nationality": "example.nationality",
 "shift": "example.shift",
 "dateOfHire": "2023-05-01",
 "occupation": "example.occupation",
 "phone": "example.ManagerPhone",
 "mobile": "example.ManagerMobile",
 "typeOfPerson": "example.typeOfPerson",
 "managerName": "example.managerName",
 "managerPhone": "example.managerPhone",
 "ageRange": "example.ageRange",
 "address1": "example.address1",
 "address2": "example.address2",
 "address3": "example.address3",
 "town" : "example.town",
 "county": "example.county",
 "postcode": "example.postcode",
 "location": "example.location",
 "locality" : "example.locality",
 "nextOfKin":
 {
 "name": "NextOfKin.Name",
 "address1" : "NextOfKin.Address1",
 "address2" : "NextOfKin.Address2",
 "address3" : "NextOfKin.Address3",
 "town" : "NextOfKin.Town",
 "county": "NextOfKin.County",
 "postcode": "NextOfKin.Postcode",
 "phone" : "NextOfKin.Phone",
 "relationship": "NextOfKin.Relationship",
 "mobile" : "NextOfKin.Mobile",
 "email": "NextOfKin@evotix.com",
 "notes" : "NextOfKin.Notes",
 "additionalfield1" : "additionalField1",
 "additionalfield2" : "additionalField2"
 }
}

© 2024 EVOTIX all rights reserved Page 20

API Guide

to check that you are using UTF-8 as if not then when you get foreign characters in the
data or other symbols like emoticons these will not appear correctly in Assure.
As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is VERY IMPORTANT to ensure that when generating JSON
objects to send to the Customer API you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to API errors and can also be a source of
security vulnerabilities.

Creating a Person Register Record

The Customer API allows the creation of person register records in Assure using the
/v1/person-register API method with the POST verb. The person register record’s details are
supplied in the body of the API request using the person register JSON object (see section
above). Records are uniquely identified by their reference which is the value in the
reference field of the Person Register JSON object. If there are no person register records
for the reference provided in the request then the /v1/person-register API method will create
the record using the details in the Person Register JSON object.

If there is an existing person register record for the external ID then the /v1/person-register
API method will update the existing Person Register record to match the supplied details
(see the ‘Update a Person Register Record' section below for details on the behaviour
when updating an existing Person Register record). Note: If there are multiple person
register records with the same reference that is provided in the request this will result in
an error response (HTTP error 409).

Before attempting to use the /v1/person-register API method make sure you understand the
Person Register JSON object (see the section above) and that you have the required
details to access the API (i.e. the URL prefix, API key, etc), follow the Getting Started Guide
if you don’t have these details already. The following table sections show how to create a
person register record using the /v1/person-register API method in a variety of software tools
/ platforms:

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may change).
Implement effective error handling as per the guide for error handling.

© 2024 EVOTIX all rights reserved Page 21

API Guide

Postman
API
platform

The screenshot below shows a successful ‘create person register record’ request for a
customer on the uk2 stack. The API key is supplied via the ‘Authorization’ tab (see the Getting
Started Guide for how to setup the API key). The response section at the bottom shows the
result Status: 200 OK which indicates that the record’s creation was successful (also
displayed is the response message from the Customer API confirming the successful
creation).

NB: With tools like this where the Person Register JSON POST object is manually entered you
must ensure the contents of any string values are properly escaped.

© 2024 EVOTIX all rights reserved Page 22

API Guide

Windows
Powersh
ell

The code block below shows the few lines of Powershell script required to setup the Person
Register Object JSON POST and to make the ‘create person register record’ request to the
Customer API for a customer on the uk2 stack. The
XXX is where the API key needs to be
placed.

$PersonRegisterObjectJSON = @{

 "forename" = "example.forename",

 "surname" = "example.surname",

 "reference" = "example.ApiReference",

 "orgUnitExternalId" = "example.OrgUnit"

} | ConvertTo-Json

Invoke-WebRequest `

 -Headers @{'x-api-key' = 'XXX'} `

 -Uri https://api.uk2.sheassure.net/v1/person-register `

 -Method Post `

 -ContentType 'application/json' `

 -Body $PersonRegisterObjectJSON`

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the create person
register request was successful. Some response lines have been removed for brevity.

StatusCode : 200

StatusDescription : OK

Content : {"message":"Person register successfully created."}

© 2024 EVOTIX all rights reserved Page 23

API Guide

Python

The code block below shows the few lines of Python code required to setup the Person
Register Object JSON POST and to make the ‘create person register’ request to the
Customer API for a customer on the uk2 stack. The
XXX is where the API key needs to be
placed.

pip install requests
import requests

person_register_object = {

 "forename": "example.forename",

 "surname": "example.surname",

 "reference" : "example.ApiReference",

 "orgUnitExternalId" : "example.OrgUnit"

}

headers = { "x-api-key": "XXX"}

r = requests.post("https://api.uk2.sheassure.net/v1/person-register", headers=headers,

json = person_register_object)

r.raise_for_status()

print(f"StatusCode={r.status_code}")
print(f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the person register record
creation was successful.

StatusCode=200

Body=b'{"message": "Person register successfully created."}'

© 2024 EVOTIX all rights reserved Page 24

API Guide

Updating a Person Register Record with POST request

The Customer API allows the updating of person register records in Assure using the
/v1/person-register API method with the POST verb. The person register record details are
supplied in the body of the API request using the Person Register JSON POST object.
Person register records are identified by their reference, which is the value in the
reference field of the Person Register JSON POST object. If there is an existing person
register record for the reference provided then the /v1/person-register API method will
update the existing person register record to match the supplied details (see the ‘Update
a person register record’ section below for details on the behaviour when updating an
existing person register record). Note: If there are multiple person register records with
the same reference that is provided in the request this will result in an error response
(HTTP error 409).

If there is no person register records for the reference then the /v1/person-register API
method will create the person register record using the details in the Person Register
JSON POST object (see the ‘Create a person register record’ section above for details on
the behaviour when creating a person register record).

Before attempting to use the /v1/person-register API method make sure you understand
the Person Register JSON POST object (see the section above) and that you have the
required details to access the API (i.e. the URL, API key, etc), follow the Getting Started
guide if you don’t have these details already. The following table sections show how to
update a person register record using the /v1/person-register API method in a variety of
software tools / platforms:

Partial updates are not supported with a POST request. If you wish to perform a Partial
Update please see Managing Person Register Records via the API | Update a person
register record with PATCH request section.

If you try to update a record with using the POST request Assure will update the person
register record to match the details supplied, this includes applying the default values for
any fields that are not provided in the Person Register JSON POST object. See the
OpenAPI schema for details of how the person register data will be defaulted for each
field.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change). Implement effective error handling as per the guide for error handling.

© 2024 EVOTIX all rights reserved Page 25

API Guide

Postman
API
platform

The screenshot below shows a successful ‘update person register’ request for a customer on
the uk2 stack (NB: the Postman setup is identical to that used for creating a person register
record). The API key is supplied via the ‘Authorization’ tab (see the Getting Started guide for
how to setup the API key). The response section at the bottom shows the result Status: 200
OK which indicates that the person register update was successful (also displayed is the
response message from the Customer API confirming the successful update).

NB: With tools like this where the Person Register JSON object is manually entered you must
ensure the contents of any string values are properly escaped.

Windows
Powersh
ell

The code block below shows the few lines of Powershell script required to setup the Person
Register JSON POST object and to make the ‘update person register’ request to the
Customer API for a customer on the uk2 stack (NB: this is identical to the script for creating a
person register record). The XXX is where
the API key needs to be placed.

$PersonRegisterObjectJSON = @{

 "forename" = "example.forename",

 "surname" = "example.surname",

 "reference" = "example.ApiReference",

 "orgUnitExternalId" = "example.OrgUnit"

} | ConvertTo-Json

Invoke-WebRequest `

 -Headers @{'x-api-key' = 'XXX'} `

 -Uri https://api.uk2.sheassure.net/v1/person-register `

 -Method Post `

 -ContentType 'application/json' `

 -Body $PersonRegisterObjectJSON`

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the update a person
register record request was successful. Some response lines have been removed for brevity.

StatusCode : 200

StatusDescription : OK

Content : {"message":"Person register updated."}

https://evotix.atlassian.net/wiki/spaces/kb/pages/196411529

© 2024 EVOTIX all rights reserved Page 26

API Guide

Python

The code block below shows the few lines of Python code required to setup the Person Register

JSON POST object and to make the ‘update person register’ request to the Customer API for a

customer on the uk2 stack (NB: this is identical to the script for creating a person register record).

The XXX is where the API key needs to be

placed.

pip install requests
import requests

person_register_object = {

 "forename": "example.forename",

 "surname": "example.surname",

 "reference" : "example.ApiReference",

 "orgUnitExternalId" : "example.OrgUnit"

}

headers = { "x-api-key": "XXX"}

r = requests.post("https://api.uk2.sheassure.net/v1/person-register", headers=headers,

json = person_register_object)

r.raise_for_status()

print(f"StatusCode={r.status_code}")
print(f"Body={r.content}")

The following shows the output from the above Python code being run where a successful

response is generated. The StatusCode=200 indicates that the person register update was

successful.

StatusCode=200

Body=b'{"message": "Person register updated."}'

Partial update of a Person Register Record with PATCH request

The Customer API allows the partial update of person register records in Assure using the
/v1/person-register/{reference} API method with the PATCH verb. A PATCH request will
only update the fields provided in the request and any other fields will remain unchanged.

The record that will be updated will be identified by its reference provided from the
{reference} path parameter. The person register record details to be updated are
supplied in the body of the API request using the person register JSON PATCH object. If
there is an existing person register record for the reference provided then the
/v1/person-register/{reference}API method will update the existing person register record
with the supplied details. Note: If there are multiple person register records with the same
reference that is provided in the request this will result in an error response (HTTP error
409). Additionally if there is no person register record with the reference that is provided
in the request this will result in an error response (HTTP error 404).

© 2024 EVOTIX all rights reserved Page 27

API Guide

Before attempting to use the /v1/person-register/{reference} API method make sure you
understand the person register JSON PATCH object (see the section above) and that you
have the required details to access the API (i.e. the URL, API key, etc), follow the Getting
Started guide if you don’t have these details already. The following table sections show
how to perform a partial update a person register record using the /v1/person-
register/{reference} API method in a variety of software tools / platforms.

Note. All examples shown below are for a partial update of the ‘forename' and 'surname’,
any field in the JSON PATCH object can also be used for a partial update.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change). Implement effective error handling as per the guide for error handling.

Postman
API
platform

The screenshot below shows a successful ‘partial update of a person register record’
request for a customer on the uk2 stack (NB: the Postman setup is identical to that used
for creating a person register record). The API key is supplied via the ‘Authorization’ tab
(see the Getting Started guide for how to setup the API key). The response section at the
bottom shows the result Status: 200 OK which indicates that the person register update
was successful (also displayed is the response message from the Customer API
confirming the successful update).

NB: With tools like this where the Person Register JSON Patch object is manually entered
you must ensure the contents of any string values are properly escaped.

© 2024 EVOTIX all rights reserved Page 28

API Guide

Windows
Powershell

The code block below shows the few lines of Powershell script required to setup a partial
update using the Person Register Object Patch JSON. It also shows how to make the Patch
partial update request to the Customer API for a customer on the uk2 stack. The
XXX is where the API key needs to be
placed.
IMPORTANT - Note the use of [System.Net.WebUtility]::UrlEncode to ensure that the
reference value is properly escaped for inclusion in the URL.

$PersonRegisterObjectJSON = @{

 "forename" = "example.forename",

 "surname" = "example.surname",

} | ConvertTo-Json

Invoke-WebRequest `

 -Headers @{'x-api-key' = 'XXX'} `

 -Uri https://api.uk2.sheassure.net/v1/person-register/ +

[System.Net.WebUtility]::UrlEncode("example?reference")

 -Method Patch `

 -ContentType 'application/json' `

 -Body $PersonRegisterObjectJSON`

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the partial update of
the person register record request was successful. Some response lines have been
removed for brevity.

StatusCode : 200

StatusDescription : OK

Content : {"message":"Person register updated."}

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode

© 2024 EVOTIX all rights reserved Page 29

API Guide

Python

The code block below shows the few lines of Python code required to setup the Person
Register JSON PATCH Object and to make the ‘update person register’ request to the
Customer API for a customer on the uk2 stack (NB: this is identical to the script for creating
a person register record). The XXX is
where the API key needs to be placed.

pip install requests

pip install urllib

import requests

import urllib

person_register_object = {

 "forename": "example.forename",

 "surname": "example.surname",

}

headers = { "x-api-key": "XXX"}

url = "https://api.uk2.sheassure.net/v1/person-register/" +
urllib.parse.quote('example.reference', safe='')

r = requests.patch(url, headers=headers, json = person_register_object)

r.raise_for_status()

print(f"StatusCode={r.status_code}")

print(f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the person register partial
update was successful.

StatusCode=200

Body=b'{"message": "Person register updated."}'

© 2024 EVOTIX all rights reserved Page 30

API Guide

Deleting a Person Register Record

The Customer API allows the deletion of person register records in Assure using the
/v1/person-register/{reference} API method with the DELETE verb. The record will be identified
by its reference provided from the {reference} path parameter. The Person Register Object
is NOT required for this method.

If there is no person register record for the reference provided then the /v1/person-
register/{reference}API method will still return a successful response (i.e. HTTP status code
in the range 200-299).

Before attempting to use the /v1/person-register/{reference} API method make sure you have
the required details to access the API (i.e. the URL, API key, etc), follow the Getting Started
guide if you don’t have these details already. The following table sections show how to
delete a person register record using the /v1/person-register/{reference} API method in a
variety of software tools / platforms:

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may change).
Implement effective error handling as per the guide for error handling.

IMPORTANT - The login user name value needs to have URL escaping applied before
inclusion in the URL.

© 2024 EVOTIX all rights reserved Page 31

API Guide

Postman
API
platform

The screenshot below shows a successful ‘delete person register record’ request for a
customer on the uk2 stack. Note the use of the ‘Authorization’ tab to configure the API key
header. The XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX value is where the API key would be
placed. The response section at the bottom shows the result Status: 200 OK which indicates
that the record was successfully disabled (also displayed is the response message from the
Customer API confirming the successful disable).

NB: With tools like this where the reference to be deleted is manually entered you must
ensure that URL escaping is applied to the reference.

Windows
Powersh
ell

The code block below shows the few lines of Powershell script required to make the ‘delete
person register record’ request to the Customer API for a customer on the uk2 stack. The
XXX is where the API key needs to be
placed.

IMPORTANT - Note the use of [System.Net.WebUtility]::UrlEncode to ensure that the reference
value is properly escaped for inclusion in the URL.
$URL = "https://api.uk2.sheassure.net/v1/person-register/" +

[System.Net.WebUtility]::UrlEncode("example?reference")

Invoke-WebRequest `

 -Headers @{'x-api-key' = 'XXX'} `

 -Uri $URLEscaped `

 -Method Delete `

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the disable person
register request was successful. Some response lines have been removed for brevity.

StatusCode : 200

StatusDescription : OK

Content : {"message": "Person register record successfully deleted."}

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode

© 2024 EVOTIX all rights reserved Page 32

API Guide

Python

The code block below shows the few lines of Python code required to make the ‘delete
person register record’ request to the Customer API for a customer on the uk2 stack. The
XXX is where the API key needs to be
placed.

IMPORTANT - Note the use of urllib.parse.quote to ensure that the reference value is
properly escaped for inclusion in the URL.

pip install requests
pip install urllib
import requests
import urllib

url = "https://api.uk2.sheassure.net/v1/person-register/" +

urllib.parse.quote('example.reference', safe='')

headers = { "x-api-key": "XXX"}

r = requests.delete(url, headers=headers)

r.raise_for_status()

print(f"StatusCode={r.status_code}")
print(f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the person register delete was
successful.

StatusCode=200

Body=b'{"message": "Person register record successfully deleted."}'

https://docs.python.org/3/library/urllib.parse.html

	Managing Person Register Records via the Customer API
	Limitations
	Pre-configuration for Person Register Records
	Organisational Unit External IDs
	Picklist Values
	Custom Mandatory Values

	Person Register JSON object
	Minimum Person Register data
	Person Register record with next of kin details
	Person Register record with linked user
	Person Register record with training
	Person Register record with everything defined
	Person Register JSON PATCH object
	Creating a Person Register Record
	Updating a Person Register Record with POST request
	Partial update of a Person Register Record with PATCH request
	Deleting a Person Register Record

