il thl!ﬂtf |

API Guide

Assure Customer AP|
User Guide: Managing Users via AP|

Evotix Ltd. Revision 5.0 (April 2025)

US +1(872) 215 5913 UK +44 (0) 161 5218490 AU +61 3 8595 5909 Visit evotix.com

API Guide

EVOTIK

The Customer APl is available to customers via the public internet and takes the form of a
RESTful API. Using the Customer APl you can automate processes such as managing
users, org unit structure and exporting data for analysis. Making use of the Customer API
requires a level of technical expertise so this is typically something that a company’s IT
function would handle.

This guide focusses on how to set up the Customer APl to manage users in Assure. A
separate guide is available for setting up the Customer API.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Contents
Managing users via the Customer API 4
Limitations for creating and UPAtING USEIS..........coiiiiiriiieieiesiesie sttt 4
PrE-CONTIGUIALION ... bbbttt b bbbttt 4
Organisational Unit external IDs 5

Role external IDs

Supervisor Privilege external IDs 6
USEr POST JSON ODJECE.....viivieiiieie ettt ettt ettt et et e s be et esneesteesteannesneenteeneenreas 7
Minimum user data 8

User with a role

User with multiple roles 10
User with linked person n
User with everything defined 13
USEIr JSON PATCH ODJECL.....cueiieiiiitiitiiiesieeieie ettt bbbttt st b besre s eneeneas 15
CTBALE 8 USEI ... ettt ettt ettt ettt ekttt e kbt e bt e e h e e e Rt e e s et e b e eh e e e b e e e at e e nbe e e n b e e beeanneenneeenreennneas 17
Update a USer With @ POST FEOUESTcciiiiiiieieite ettt 19
Partial update of a user record With PATCH reqUEST..........c.civiiiiieiiie e 22
DT o] (= WL SR PRSP 25

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

One of the interactive methods available via the Customer APl is the ability to manage
user accounts in Assure.

This allows you to create, update and disable user accounts in Assure.

Limitations for creating and updating users

The following lists the current limitations of the API for creating and updating users. It is
expected that these will be addressed in future Assure releases:

e Can't configure dashboards for a user (although dashboards can be manually
added via the Assure Ul once the user has been created).

e Manual changes are allowed to API defined user data. In the Assure Ul an
administrator can amend user data (e.g. email address, full name, roles) which has
been defined by the APL If the user is subsequently updated via the API then
manual changes made in Assure will be overwritten by the APl supplied data.

e No support for configuration of notification groups for the user.

There is no support for providing an initial password for the user. This is because the use
of static passwords is not secure and Assure supports emailing out a password link. This
method is used to allow users to set their initial password (or to reset their password if
requested when updating a user via the API).

Pre-configuration

Before the APIs can be used to create and update users there is some pre-configuration
required in Assure for Organisational Units (for units not created via the Customer API),
Roles, and Supervisor Privileges. This is required for the APl methods to be able to
correctly assign users to the Organisational hierarchy and to the correct roles (and to
supervisor privileges for those users who need them).

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Organisational Unit external IDs

The Assure Organisational Unit hierarchy has a new attribute for each unit called ‘External
ID". You will find this in the ‘Edit’ page of an Organisational Unit and its purpose is to allow
an unique external identifier to be associated with each unit. This is necessary because:

1. The existing Organisational Unit names are not unique and therefore cannot be
used with by the APl method to target a specific Organisational Unit.

2. Organisational Unit names can be changed by Assure administrative users so they
are not guaranteed to align with external IT systems.

3. Integration workflows should use the immutable unique identifier for Organisational
Units so that changes to names (whether in Assure or the source system) do not
break the integration workflow. This means Assure needs to be able to configure the
unique identifier against each Organisational Unit which is what the External ID field
does.

It is strongly recommended that the customer use their own identifier external ID of an
Organisational Unit i.e. the identifier that their IT systems use for the Organisational Unit
(e.g. for a retailer this might be the Shop ID). This removes the need for the customer to
maintain a mapping between their Org Unit identifiers and the Assure internal identifier for
an Org Unit.

The external IDs for existing Organisational Units can be configured manually using the
Assure Ul (screenshot below shows an example setting the Organisational Unit external ID
for the “North West region” to be REGION_NW). This is fine for testing but for ensuring
that the Organisational Unit hierarchy is in sync with the customers user management
system we have a bulk import/update tool which can be used.

w Details

Hame *

Details

External ID

The External ID must be unigue

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Role external IDs

Assure roles also now have a new attribute for each role called ‘External ID". You will find
this in the ‘Edit’ page of a Role and its purpose is to allow an unique external identifier to
be associated with each role. This is necessary for the same reasons as detail above for
the Organisational Units. The external IDs for the roles can ONLY be configured manually
using the Assure Ul (screenshot below shows an example setting the Role external ID for
the “Sales users” to be SALES).

v Details

(Koem) (7 ew) (& er)

External ID

The Role External 1D must be unique.

Supervisor Privilege external IDs

Assure Supervisor Privileges also now have a new attribute for each Supervisor Privilege
called ‘External ID". You will find this in the ‘Edit’ page of the Supervisor Privilege and its
purpose is to allow an unique external identifier to be associated with the Supervisor
Privilege. This is necessary for the same reasons as detail above for the Organisational
Units. The external IDs for the Supervisor Privileges can ONLY be configured manually
using the Assure Ul (screenshot below shows an example setting the Role external ID for
the “Manager Users” to be MANAGERS).

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

v Details

*
Group Name Manager Users|

Description Loremlpsum

External Id MANAGERS

[X Deny][/ Allow][f Inherit]

Manage Picklist Data @ Deny O Allow O Inherit
Dictionary *

Configure the picklist

User POST JSON object

When creating or updating a user the user’s details need to be provided in the form of a
JSON object. JSON is the most commonly used syntax for describing data objects in
RESTful APIs. The OpenAPI schema for the Customer API contains the formal definition of
the JSON structure i.e. the userPOSTRequest object. The OpenAPI schema is the master
definition of the APl methods and data objects, it should always be consulted to
understand the required fields, field types, max data lengths and string patterns, plus
descriptions of the behaviour associated with the use of each field (or its omission).
Some software tools and platforms can consume the OpenAPl schema to automate the
process of generating the correct JSON and if this is available it should be used. To aid
understanding of how the JSON fields in the User JSON object relate to the resulting User
setup in Assure the following sections contain some worked examples.

The text encoding to be used for all interactions with the Customer APl is UTF-8. This is
pretty much the standard today for software tools and platforms however it is important
to check that you are using UTF-8 as if not then when you get foreign characters in the
data or other symbols like emoticons these will not appear correctly in Assure.

As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is VERY IMPORTANT to ensure that when generating JSON
objects to send to the Customer API you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to API errors and can also be a source of
security vulnerabilities.

© 2024 EVOTIX all rights reserved

https://github.com/Evotix/public-assure-customerapi

API Guide

EVOTIK

Minimum user data

This example shows the minimum possible user data which can be used to create/update
a user. A user created with this data would not be very useful as they have no roles
defined however it is a good place to start for testing the ability to create or user a user.

{
"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW"
}
b
Fiarns Pager
Ema
U L T (] e
+ + |]

User with a role

This example shows the same user with a role which would allow them to actually
meaningfully use Assure. The user details will be the same as the ‘minimum user data’
screen shot above. The difference in this case is that the role is present in the
Permissions section.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW",
"roles": [
{
"orgUnitExternalId": "REGION NW",
"roleExternalId": "SALES"

v Permissions

Supervisor Privilege

Role Org Unit Include Children

Sales user North West region Mo 7 Edit T Remove
i

© 2024 EVOTIX all rights reserved

EVOTIK

User with multiple roles

API Guide

This example shows the same user with multiple roles (including a role which includes all
children). The user details will be the same as the ‘minimum user data’ screen shot above.
The difference in this case is that the two roles are present in the Permissions section

(with the Read only role including children).

"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW",
"roles": [
{
"orgUnitExternalId": "REGION NW",
"roleExternalId": "SALES"

I
"orgUnitExternalId": "UK",

"includeChildUnits": true

"roleExternalId": "VIEWER",

v Permissions
Superviser Privilege
W
Role Org Unit Include Children
Sales user Morth West region o
Read Only K
<+ Add

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

User with linked person
This example shows the same user with a linked person.

In order to link a User with a Person Record, you must have the feature enabled in System
Settings.

In order to link a User to a Person record, the request will include the same fields as in the
‘minimum person register data’ section but it will also require the
‘linkedPersonRecordReference’ field.

Note: The email and fullname field values of the User will also update the linked
Person's record’s person email, forename and surname as well.

"username": "example.apiuser",

"fullname": "Example APIUser",

"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW",
"linkedPersonRecordReference": "ExamplePersonRecordReference"

v Details

*
User Name example.apiuser

Password

Confirm Password

Full Name * Example Apiuser 20

update it for both the linked User and the Person Register Record. This means both Names w
Linked Person Record Example Apiuser
Email * example.apiuser@evotix.com 29

he linked User and the Person Register Record. This means both

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Specific Behaviour:
o Create endpoint:

o If People/User linking is not enabled and a linked Person Register reference is
provided, then it will return error 400. Error 400 means no changes have
been made at all.

o Person Register reference needs to be provided to link to a User.

o If a Person Register reference is provided it will validate if the given Person
can be linked, if they cannot be linked it will return an error 400.

= A Person cannot be linked if:
= The feature is not enabled
= The Person is linked to another User (this mirrors the behaviour
in the UI)
= The update will create duplicate Person emails
« Edit endpoint:

o If People/User linking is not enabled and a linked Person Register reference is
provided then it will return error 400.

o Peron Register reference needs to be provided to link to a User.

o If a Person Register reference is provided it will validate if the given Person
can be linked, if they cannot be linked return error 400.

= A Person cannot be linked if:
= The feature is not enabled
= The Person is linked to another User (same as through the Ul)
= The update will create duplicate Person emails

o If the User is already linked to a Person and a different Person Register
reference is provided then the User will be re-link user to a new
Person. Shared fields will be updated to match the users.

= If the Person cannot be linked then it will return an error 400. A Person
cannot be linked if:
= The feature is not enabled
= The Person is linked to another User (same as through the Ul)
= The update will create duplicate Person emails

o If the User is already linked to a Person and the Person Register reference is
empty/null the User will be unlinked from the Person.

o If the User is not current / made not current, the API will follow the same
approach regarding linking/unlinking/re-linking depending on what
information is included for the Person Register reference.

e Delete endpoint
o Deleting a User will un-link it from a person.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

User with everything defined

This example shows the same user with multiple roles (including a role which includes all
children) and all the possible fields defined. Note that as per the OpenAPI schema the
sendPasswordReset and requirePasswordChange fields only take effect when updating a user
(you can include them when creating a user but they will be ignored).

It is not necessary to set all the fields when creating/updating a user. Any of the fields
which are not required can be omitted in which case the default value for the field will be
applied. See the description against each field in the OpenAP| schema for details of the
default behaviour.

"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW",
"linkedPersonRecordReference": "ExamplePersonRecordReference",
"maskedOrgUnitExternalId": "REGION NW",
"roles": [
{
"orgUnitExternalId": "REGION NW",
"roleExternalId": "SALES"
}I
{
"orgUnitExternalId": "UK",
"roleExternalId": "VIEWER",

"includeChildUnits": true

] 14

"assureGoPlusOnly": false,
"isManager": true,

"managerUsername": "manager.apiuser",
"dateFormat": "MONTH FIRST",
"languageCode": "en-gb",
"timezoneName": "GMT Standard Time",
"supervisorPrivilegeExternalId": "MANAGER",
"sendPasswordReset": true,
"requirePasswordChange": true,
"sisenseRole": "VIEWER"

The user permissions will be the same as the ‘user with multiple roles’ screen shot above,
the user will have permission to view insights.

© 2024 EVOTIX all rights reserved

https://github.com/Evotix/public-assure-customerapi

EVOTIK

w Details

User Name #
Password
Confirm Password

Full Name #

A

Linked Person Record

Email #

User Access Type*

Is Current User

Send 'Reset Password' Link

Default Unit#

Is Manager

Manager

User must change passweord at next login

Masked Parent

User Specific Timezone

Language #

Date Format *

© 2024 EVOTIX all rights reserved

example.apiuser

Example Apiuse 2@

Example Apiuser

example.apiuser@evotix.com 29

@ Assure and
AssureGo+

O AssureGo+
only

(]
North West region
Manager APIUser
O
North West region

(UTC+00+ Dublin, Edinburgh v |

English (UK) v

API Guide

1. This means both

API Guide

EVOTIK

User JSON PATCH Object

When sending a patch request to update a user’s details they need to be provided in the
form of a JSON object. JSON is the most commonly used syntax for describing data
objects in RESTful APIs, for an introduction to JSON see this guide. The OpenAPI schema
for the Customer API contains the formal definition of the JSON structure i.e. the
userPATCHRequestobject. The OpenAPIl schema is the master definition of the API
methods and data objects, it should always be consulted to understand the required
fields, field types, max data lengths and string patterns, plus descriptions of the
behaviour associated with the use of each field (or its omission). Some software tools and
platforms can consume the OpenAPI schema to automate the process of generating the
correct JSON and if this is available it should be used.

The below section of JSON shows all the fields in the User JSON PATCH Object.
Note. The object contains almost all the same fields as the JSON POST object but it does
not contain the username field in the body.

© 2024 EVOTIX all rights reserved

https://www.w3schools.com/js/js_json_intro.asp

API Guide

EVOTIK

"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW",
"linkedPersonRecordReference": "ExamplePersonRecordReference",
"maskedOrgUnitExternalId": "REGION NW",
"roles": [
{
"orgUnitExternalId": "REGION NW",
"roleExternalId": "SALES"
}I
{
"orgUnitExternalId": "UK",
"roleExternalId": "VIEWER",

"includeChildUnits": true

] 14

"assureGoPlusOnly": false,
"isManager": true,

"isCurrent": true,

"managerUsername": "manager.apiuser",
"dateFormat": "MONTH FIRST",
"languageCode": "en-gb",
"timezoneName": "GMT Standard Time",
"supervisorPrivilegeExternalId": "MANAGER",
"sendPasswordReset": true,
"requirePasswordChange": true,
"sisenseRole": "VIEWER"

The text encoding to be used for all interactions with the Customer APl is UTF-8. This is
pretty much the standard today for software tools and platforms however it is important
to check that you are using UTF-8 as if not then when you get foreign characters in the
data or other symbols like emoticons these will not appear correctly in Assure.

As JSON objects are described using plain text it is possible to hand craft these objects
for initial testing. However, it is VERY IMPORTANT to ensure that when generating JSON
objects to send to the Customer API you use a proper JSON library or a tool with native
JSON support. This is because JSON relies on ‘escaping’ for certain data values, if this
escaping is not done correctly it will lead to API errors and can also be a source of
security vulnerabilities.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Create a user

The Customer API allows the creation of users in Assure using the /vi/user APl method with
the POST verb. The users details are supplied in the body of the API request using the User
JSON object (see section above). Users are uniquely identified by their login user name,
which is the value in the username field of the User JSON object. If there is no user record
for the login user name then the /vi/user APl method will create the user using the details
in the User JSON object. If the customer's licence limit has been reached then attempting
to create a user which would require another licence will result in an error response (HTTP
error 400).

If there is an existing user record for the login user name then the /vi/user APl method will
update the existing user record to match the supplied details (see the ‘Update a user’
section below for details on the behaviour when updating an existing user).

Before attempting to use the /vi/user APl method make sure you understand the User
JSON object (see the section above) and that you have the required details to access
the API (i.e. the URL prefix, APl key, etc). The following table sections show how to create a
user using the /vi/user APl method in a variety of software tools / platforms:

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change).

© 2024 EVOTIX all rights reserved

EVOTIK

API Guide

The screenshot below shows a successful ‘create user’ request for a customer on the uk2
stack. The API key is supplied via the ‘Authorization’ tab. The response section at the
bottom shows the result Status: 200 OK which indicates that the user creation was
successful (also displayed is the response message from the Customer API confirming
the successful creation).

NB: With tools like this where the User JSON object is manually entered you must ensure
the contents of any string values are properly escaped.

Postman
A PI P/ agh A2 SNa-development netiviiser
platform POST 205 /)30l L) the-deve
The code block below shows the few lines of Powershell script required to setup the User
Object JSON and to make the ‘create user’ request to the Customer API for a customer
on the uk2 stack. The xxxxxxxxxxxxxxx is where the APl key needs to be placed.
SUserObjectJSON = @({
"username" = "example.apiuser"
"fullname" = "Example APIUser"
"email" = "example.apiuser@evotix.com"
"defaultOrgUnitExternalId" = "REGION NW"
} | ConvertTo-Json
. Invoke-WebRequest
WlndOWS -Headers @{'x-api-key' = 'XXXXXXXXXXXXXXX' }
Powershe" -Uri https://api.uk2.sheassure.net/vl/user °

-Method Post
-ContentType 'application/json'
-Body S$UserObjectJSON"

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the create user
request was successful. Some response lines have been removed for brevity.

StatusCode : 200
StatusDescription : OK
Content : {"message":"User successfully created."}

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

The code block below shows the few lines of Python code required to setup the User
Object JSON and to make the ‘create user’ request to the Customer API for a customer
on the uk2 stack. The xxxxxxxxxxxxxxx is where the APl key needs to be placed.

pip install requests
import requests

user object = {
"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW"
}
Python .
headers = { "x—api-key": "XXXXXXXXXXXXXXX"}
r = requests.post ("https://api.uk2.sheassure.net/vl/user", headers=headers, json =
user object)

r.railse for status()
print (f"StatusCode={r.status code}")
print (f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the user creation was successful.

StatusCode=200
Body=b'{"message": "User successfully created."}'

Update a user with a POST request

The Customer API allows the updating of users in Assure using the /vi/user APl method
with the POST verb. The users details are supplied in the body of the API request using the
User JSON object (see section above). Users are uniquely identified by their login user
name, which is the value in the username field of the User JSON object. If there is an
existing user record for the login user name then the /vi/user APl method will update the
existing user record to match the supplied details (see the ‘Update a user’ section below
for details on the behaviour when updating an existing user). If the existing user record is
disabled then the user will be re-enabled.

If there is no user record for the login user name then the /vi/user APl method will create
the user using the details in the User JSON object (see the ‘Create a user’ section above
for details on the behaviour when creating a user).

Before attempting to use the /vi/user API method make sure you understand the User
JSON object (see the section above) and that you have the required details to access
the API (i.e. the URL, API key, etc). The following table sections show how to update a user
using the /vijuser APl method in a variety of software tools / platforms:

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Partial updates are not supported with a POST request. If you wish to perform a Partial
Update please see the section Partial update of a user record with PATCH request.

If you try to update a record with using the POST request Assure will update the person
register record to match the details supplied, this includes applying the default values for
any fields that are not provided in the User JSON POST object. See the OpenAPI schema
for details of how the user data will be defaulted for each field.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may

change).

The screenshot below shows a successful ‘update user’ request for a customer on the
uk2 stack (NB: the Postman setup is identical to that used for creating a user). The APl key
is supplied via the ‘Authorization’ tab. The response section at the bottom shows the
result Status: 200 OK which indicates that the user update was successful (also
displayed is the response message from the Customer API confirming the successful
update).
NB: With tools like this where the User JSON object is manually entered you must ensure
the contents of any string values are properly escaped.

Postman

API

platform

© 2024 EVOTIX all rights reserved

EVOTIK

API Guide

Windows
Powershell

The code block below shows the few lines of Powershell script required to setup the User
Object JSON and to make the ‘update user’ request to the Customer API for a customer
on the uk2. The XXXXXXXXXXXXXXX is where the APl key goes.

SUserObjectJSON = @{

"username" = "example.apiuser"
"fullname" = "Example APIUser"
"email" = "example.apiuser@evotix.com"
"defaultOrgUnitExternalId" = "REGION NW"
} | ConvertTo-Json

Invoke-WebRequest
-Headers (@{'x-api-key' = 'XXXXXXXXXXXXXXX" }
-Uri https://api.uk2.sheassure.net/vl/user
-Method Post
-ContentType 'application/json'
-Body S$UserObjectJSON"

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the update user
request was successful.

StatusCode : 200
StatusDescription : OK
Content : {"message":"User updated."}

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

The code block below shows the few lines of Python code required to setup the User
Object JSON and to make the ‘updateuser’ request to the Customer API for a customer
on the uk2 stack. The XXXXXXXXXXXXXXX is where the APl key goes.

pip install requests
import requests

user object = {
"username": "example.apiuser",
"fullname": "Example APIUser",
"email": "example.apiuser@evotix.com",
"defaultOrgUnitExternalId": "REGION NW"
}

Python headers = { "x-api-key": "XXXXXXXXXXXXXXX"}
r = requests.post ("https://api.uk2.sheassure.net/v1l/user",
headers=headers, Jjson = user object)

r.raise for status()
print (f"StatusCode={r.status code}")
print (f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the user update was
successful.

StatusCode=200
Body=b'{"message": "User updated."}'

Partial update of a user record with PATCH request

The Customer API allows the partial update of Users in Assure using the
/vl/user/{username} APl method with the PATCH verb. A PATCH request will only update
the fields provided in the request and any other fields will remain unchanged.

The record that will be updated will be identified by its reference provided from the
{username} path parameter. The user details to be updated are supplied in the body of
the API request using the user JSON PATCH object. If there is an existing user for the
username provided then the /vl/user/{username}API method will update the existing user
with the supplied details. Note: If there is no user existing with the username that is
provided in the request this will result in an error response (HTTP error 404).

Before attempting to use the /vl/user/{username} API method make sure you understand
the user JSON PATCH object (see the section above) and that you have the required
details to access the API (i.e. the URL, API key, etc), follow the Getting Started guide if you
don't have these details already. The following table sections show how to perform a

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

partial update of a user using the /vi/user/{username} APl method in a variety of software
tools / platforms.

Note: All examples shown below are for a partial update of the ‘email’ field. All fields in the
JSON PATCH object can also be used for a partial update.

Any HTTP response code is the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change). Implement effective error handling as per the guide for error handling.

The screenshot below shows a successful ‘partial update of a user’ request for a
customer. (NB: the Postman setup is very similar to that used for creating a user). The API
key is supplied via the ‘Authorization’ tab (see the Getting Started guide for how to setup
the API key). The response section at the bottom shows the result Status: 200 OK which
indicates that the user update was successful (also displayed is the response message
from the Customer API confirming the successful update).

Postman NB: With tools like this where the User JSON object is manually entered you must ensure
API the contents of any string values are properly escaped.

platform

© 2024 EVOTIX all rights reserved

https://evotix.atlassian.net/wiki/spaces/kb/pages/196411529

API Guide

EVOTIK

The code block below shows the few lines of Powershell script required to setup a partial
update using the User Object Patch JSON. It also shows how to make the Patch partial
update request to the Customer API for a customer on the uk2 stack. The
XXXXXXXXXXXXXXXXXXXXKXXXXXXXXXXXXXXXXXXXX is where the APl key needs to be
placed.

IMPORTANT - Note the use of [System.Net.WebUtility]::UrlEncode to ensure that the
reference value is properly escaped for inclusion in the URL.

SUserObjectJSON = @{

"email" = "example@test.com"
} | ConvertTo-Json
Invoke-WebRequest
Windows —-Headers @{'x-api-key' =

19:0:9:9:0:0:0:0.0:9:0.0.9:9.0.9.0.0.9:0.0.0:0.0:0.0:0.0.:0:0.0.0:0.0.0.0.0.0.0.0.0.QN'
-Uri https://api.uk2.sheassure.net/vl/user/ +
[System.Net.WebUtility]::UrlEncode ("testUsername")
-Method Patch
-ContentType 'application/json'

Powershell

-Body S$UserObjectJSON’

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the update user
request was successful.

StatusCode : 200
StatusDescription : OK
Content : {"message":"User updated."}

© 2024 EVOTIX all rights reserved

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode

API Guide

EVOTIK

The code block below shows the few lines of Python code required to setup the User
JSON PATCH Object and to make the ‘update user request’ request to the Customer API
for a customer on the uk2 stack (NB: this is identical to the script for creating a user
record). The XXX is where the API key
needs to be placed.

pip install requests
pip install urllib
import requests

import urllib

user object = {

"email": "example@test.com"
}
Pvth headers = { "x—api-key": "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXKXXXXKXKXKXKKX" }
ython url = "https://api.uk2.sheassure.net/vl/user/" +

urllib.parse.quote ('testUsername', safe='")

r = requests.patch(url, headers=headers, json = user object)
r.raise for status()

print (f"StatusCode={r.status code}")

print (f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the user update was
successful.

StatusCode=200
Body=b'{"message": "User updated."}'

Delete a user

The Customer API allows the deleting of users in Assure using the /vi/user/{username} API
method with the DELETE verb. The user to be deleted is identified by their login username
supplied via the {username} path parameter. The User Object is NOT required for this
method.

If there is no user record for the login user name or the user is already deleted then the
IM/user/{username} APl method will still return successfully response (i.e. HTTP status code
in the range 200-299).

Before attempting to use the /vi/user/{username} APl method make sure you have the
required details to access the API (i.e. the URL, API key, etc). The following table sections
show how to disable a user using the /vi/user/{username} APl method in a variety of
software tools / platforms:

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

There are some scenarios where you cannot delete users, these are the same as in the Ul
and an appropriate error message will be returned explaining the reason if this is the case.

These scenarios include:

e Useris a System user

e User is set as an approver

e User is set as a reviewer

e User is assigner to tasks

e User is a notification user

e User is a portal notification user

e User is a Auto Archive Recipient

e User is a Seven Day Recipient

e Useris a HR resource for an org unit

e Useris a portal user

e User is a dashboard owner

e User has any HR records

e User has any rules assigned to them

e User has any notifications assigned to them
e User has any outstanding tasks

o AGO+ action users (assignees or raisers)

Any HTTP response code in the range 200-299 should be treated as success (do not use
the contents of the response body for identifying success or failure as these may
change).

IMPORTANT - The login user name value needs to have URL escaping applied before
inclusion in the URL.

© 2024 EVOTIX all rights reserved

EVOTIK

API Guide

The screenshot below shows a successful ‘delete user’ request for a customer on the uk2
stack. Note the use of the ‘Authorization’ tab to configure the APl key header. The
XXXXXXXX XXX XXXXXXXXXXXXXXXXXXXXX value is where the APl key would be placed. The
response section at the bottom shows the result Status: 200 OK which indicates that the
user disable was successful (also displayed is the response message from the Customer
API confirming the successful disable).

Postman NB: With tools like this where the login user name to be deleted is manually entered you
API must ensure that URL escaping is applied to the username.
platform . .G
=T
The code block below shows the few lines of Powershell script required to make the
‘delete user’ request to the Customer API for a customer on the uk2 stack. The
XXHXXXXKXX XXX XX KXXKXKXXK is where the APl key needs to be placed.
IMPORTANT - Note the use of [System.Net.WebUrtility]:Url[Encode to ensure that the login
username value is properly escaped for inclusion in the URL.
SURL = "https://api.uk2.sheassure.net/vl/user/" +
[System.Net.WebUtility]::UrlEncode ("example?user")
Windows Invoke-WebRequest
-Headers @{'x-api-key' = "XXXXXXXXXXXXXXXXXXXXXXXX"}
Powershell

-Uri SURLEscaped
-Method Delete

The following shows the output from the above Powershell script code being run where a
successful response is generated. The StatusCode: 200 indicates that the disable user
request was successful. Some response lines have been removed for brevity.

StatusCode : 200
StatusDescription : OK
Content : {"message": "User successfully deactivated."}

© 2024 EVOTIX all rights reserved

https://learn.microsoft.com/en-us/dotnet/api/system.net.webutility.urlencode

API Guide

EVOTIK

The code block below shows the few lines of Python code required to make the ‘delete
user’ request to the Customer API for a customer on the uk2 stack. The
XXKXKXXXKXXKXKXKXKXKXKKXKXXKK is where the APl key needs to be placed.

IMPORTANT - Note the use of urllib.parse.quote to ensure that the login username value is
properly escaped for inclusion in the URL.

pip install requests
pip install urllib
import requests

import urllib

url = "https://api.uk2.sheassure.net/vl/user/" +

Python urllib.parse.quote ('example.apiuser', safe='")
headers = { "x-api-key": "XXXXXXXXXXXXXXXXXXXXXXXX"}
r = requests.delete (url, headers=headers)

r.raise for status()
print (f"StatusCode={r.status code}")
print (f"Body={r.content}")

The following shows the output from the above Python code being run where a successful
response is generated. The StatusCode=200 indicates that the user disable was
successful.

StatusCode=200
Body=b' {"message": "User successfully deactivated."}'

© 2024 EVOTIX all rights reserved

https://docs.python.org/3/library/urllib.parse.html

