o

API Guide

Assure Customer API
User Guide: Getting Started

Evotix Ltd. Revision 2.0 (July 2024)

US +1(872) 215 5913 UK +44 (0) 161 5218490 AU +61 3 8595 5909 Visit evotix.com

API Guide

EVOTIK

The Customer APl is available to customers via the public internet and takes the form of a
RESTful API. Using the Customer APl you can automate processes such as managing
users, org unit structure and exporting data for analysis. Making use of the Customer API
requires a level of technical expertise so this is typically something that a company’s IT
function would handle.

This guide focusses on how to set up the Customer APl and handle any errors you may
come across. Separate guides exist for setting up each of the APlIs.

© 2024 EVOTIX all rights reserved

EVOTIK

Contents

Getting started with the Customer API

Pre-requisites

API Guide

Obtain an APl Key

Test connectivity

Python

Retrying APl requests

Alerting and logging

4

4

4

4

Postman API platform 5

Windows Powershell 6

7

Handling errors from the Customer API 8

Understanding error responses

Connectivity errors

HTTP error response 10

1

13

13

Example logging

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

This getting start section covers getting setup to use the Customer API. This includes
creating an APl key and confirming that you can make a ‘ping’ request to the API. This
guide should be followed before moving on to using the Customer API functionality such
as User Management or Data Export.

Pre-requisites

1. Access is required to the Assure instance for which the Customer APl is to be
used. An Assure user account with permission to use the “System Settings -> API
Access” is required. This means an account with the “Manage API” supervisor
privilege.

2. Access is required to the system or platform from which the requests to the
Customer APl will be made. Ideally this should be the same system or platform
environment that will be used to host the integration workflow. However, if this is
not possible then a different system or platform environment can be used but this
may mean that further testing will be needed to confirm access to the Customer
API before using integration workflow in a ‘production’ setting.

Obtain an API Key

All requests to the Customer APl require an APl key. The API key authenticates access to
the Customer. It is very important that APl keys are stored securely and only accessible
to authorised personnel as APl keys grant access to all available functions and data (i.e.
API keys basically have the same permissions as an Assure administrator user).

To obtain an API key follow the steps in the ‘Adding and API key' section of the Customer
Knowledge Base article on managing API keys.

Test connectivity

Having obtained an API key, connectivity to the Customer API can be tested using the
‘ping’ diagnostic APl method, see the Customer API schema for more technical details of
the ‘ping’ method. The ‘ping’ method is only to be used for diagnostic purposes such as
during initial setup like this. The ‘ping’ API method does not require any data to be
supplied and does not make any changes to Assure or reveal any data from within
Assure. Hence it is a safe method to use for testing connectivity.

© 2024 EVOTIX all rights reserved

https://knowledgebase.sheassure.net/hc/en-gb/articles/10685228774300-Creating-and-managing-your-API-keys-
https://knowledgebase.sheassure.net/hc/en-gb/articles/10685228774300-Creating-and-managing-your-API-keys-
https://github.com/Evotix/public-assure-customerapi

API Guide

EVOTIK

As mentioned above it is best to test connectivity from the actual system or platform
where the integration workflow will run. The following details will be need to make the
‘ping’ APl request (as well as the API key):

Detail Notes
The URL to be used takes the form:
URL https://api.<stack>.sheassure.net/vl/ping
Where <stack> is the name of the Assure stack (e.g. uk, uk2, anz, na, etc)
which will be the same as used when you access the Assure Web Ul
HTTP methods are set of verbs which define the kind of action that the API
HTTP : .
request is to perform, see here for more details on HTTP verbs. The verb to
method e, .
use for the ‘ping’ request is GET.
The APl key needs to be included in the HTTP headers of the request. The
APl key
header header that needs to be added is the x-api-key with its value being the API
key.

The following sections show how to do the ‘ping’ request in a variety of software tools /
platforms:

Whichever software tool or platform used the way to know that the ‘ping’ request has
been successful is that the reported HTTP response code will be 200 (sometimes
reported as OK). If an error response is received then there may be a problem with the
way the request is being made, or a problem with connectivity to the Customer API, or
potentially a problem with the Customer API itself. See the next section (Handling errors
from the Customer API) for more details.

Postman API platform

Postman API platform is a widely used tool for interacting with APIs. It is not a tool that
would be used for creating integration workflows, however it is popular for exploring and
experimenting with APIs. Postman can be used online or downloaded and run on a local
machine. There is a guide from Postman showing how to create and send API requests.

The screenshot below shows a successful ‘ping’ request for a customer on the uk2 stack.
Note the use of the ‘Authorization’ tab to configure the APl key header. The
XX XXXXXXXX XXX XXX XXX XXX XXX XXXXXXX value is where the API key would be placed.

© 2024 EVOTIX all rights reserved

https://en.wikipedia.org/wiki/HTTP#Request_methods
https://www.postman.com/
https://learning.postman.com/docs/sending-requests/requests/

API Guide

EVOTIK

The response section at the bottom shows the result Status: 200 OK which indicates that
the ping was successful (also displayed is the response message from the Customer API
confirming the successful ping).

OO LIapd WA Sheanm »

NIDS |0l VAT Pt e sl Dy

w2 shemsure relN o

Windows Powershell

Windows Powershell is the command line shell provided with all modern versions of
Windows. Powershell supports making APl requests using the Invoke-WebRequest
command and this can easily be used to ‘ping’ the Customer API. The code block below
shows a successful ‘ping’ request for a customer on the uk2 stack. Note the use of the -
Headers argument to include the API key header. The XX XXX XX AKX
value is where the APl key would be placed. The response from the command shows the
StatusCode: 200 which indicates that the ping was successful (also displayed is the
response message from the Customer API confirming the successful ping). NB: Some
response lines have been removed for brevity.

PS C:\> Invoke-WebRequest -Headers @{'x-api-key' = 'XXXXXXXXXXXXXXXXXXXX"}
https://api.uk2.sheassure.net/v1/ping
StatusCode : 200
StatusDescription : OK
Content : {"message": "Ping successful. Usage of this resource is
throttled to prevent misuse (do not use
this as part of regular integration processes)."}
PS C:\>

© 2024 EVOTIX all rights reserved

https://learn.microsoft.com/en-us/powershell/
https://learn.microsoft.com/en-gb/powershell/module/Microsoft.PowerShell.Utility/Invoke-WebRequest?view=powershell-5.1

API Guide

EVOTIK

Python

Python is a popular programming language which is commonly used by IT teams when
there is a need for more than just shell style scripting. The code block below shows the
few lines of Python code required to make a ping request to the Customer API for a
customer on the uk2 stack. The code throws an exception if the request fails, otherwise it
prints out the response code to the console along with the content of the response from
the Customer API. The XXXOXOXXAXAXXKXAXAKAXAXKXAXX XXX value is where the API key would
be placed.

pip install requests
import requests

headers = { "x-api-key": "XXXXXXXXXXXXXXXXXXXX "}
r = requests.get ("https://api.uk2.sheassure.net/v1l/ping", headers=headers)

r.raise for status()
print (f"StatusCode={r.status code}")
print (f"Body={r.content}")

The following shows the output from the above Python code being run where a
successful response is generated. The StatusCode=200 indicates that the ping was
successful.

StatusCode=200
Body=b'{"message": "Ping successful. Usage of this resource is throttled to prevent
misuse (do not use this as part of regular integration processes)."}'

© 2024 EVOTIX all rights reserved

https://www.python.org/

API Guide

EVOTIK

Inevitably errors will occur from time to time when making requests to an API. Therefore it
is important to implement effective error handling so that the impact of errors can be
minimised. The following sections give details to help understand error responses that
might be encountered and guidance as to recommended handling of errors.

Understanding error responses

Broadly the error responses that could be encountered when making requests to the
Customer API can be divided into errors relating to connectivity to the API, and errors
that are generated by the APl itself. The following sections explore these in more detail
but it is important to make sure that error handling is in place for all types of errors that
can occur.

Connectivity errors

The Customer APl is available on the public internet which means that in order to be able
to make a request to the API the software tool/platform needs access to the public
internet for the purpose of making HTTPS requests to the API. The request also needs to
be correctly setup in the software tool/platform so that it is addressing the correct API
URL, using the correct API key, etc. When there is a problem with the setup or
connectivity the error reporting is handled by the software tool/platform and the way this
will be reported will be specific to the tool/platform. There may be a message in a log file,
an exception may be thrown, or a function may return an error. It will be necessary to
refer to the usage documentation for the software tool/platform or test the tool/platform
by deliberately inducing errors to see how the result is reported.

The following table describes some common connectivity error conditions and what
might cause them:

. Possible
Condition Notes
cause

Make sure that the hostname part of the URL is correct in the

Failure to tool/platform. Add logging to report the URL value just before
Incorrect . - .

lookup API setup/confi the APl request is made and verify that it is matches the

hostname P g expected value (double check against the documentation for

what the hostname should be).

© 2024 EVOTIX all rights reserved

EVOTIK

API Guide

- Possible
Condition Notes
cause
Occasionally problems with the DNS servers supporting the
DNS service server/platform being used can prevent hostname lookups.
issue Verify this with a hostname lookup diagnostic tool and if the
hostname fails to lookup then contact your IT support.
Although unlikely it is possible that a problem with the Assure
Customer AP |nf.rast.ructure is preventing thg hostnf';\me Iookup working. Verify
. this with a hostname lookup diagnostic tool and if the hostname
platform issue
is definitely correct but fails to lookup then contact Evotix
support.
Make sure that the hostname part of the URL is correct in the
tool/platform. Add logging to report the URL value just before
Incorrect . . .
setup/config the APl request is made and verify that it is matches the
expected value (double check against the documentation for
what the hostname should be).
Failure to This is a common issue especially on corporate IT networks. The
connect to API | Firewall blocking | Firewall is preventing connectivity to the APl hostname. You will
hostname the connection | need to speak to the IT team about getting the firewall

amended to allow connections.

Customer API
platform issue

Although unlikely it is possible that a problem with the Assure
infrastructure is preventing the connection from working. If you
have ruled out the other possibilities then contact Evotix
support.

SSL certificate
error

Incorrect
setup/config

Make sure that the hostname part of the URL is correct in the
tool/platform. Add logging to report the URL value just before
the APl request is made and verify that it is matches the
expected value (double check against the documentation for
what the hostname should be).

Incorrect
date/time on
the
servers/platform

Make sure the server/platform you are using has the correct
date/time. Having the incorrect date/time can cause SSL
certificate validation to fail as the certificate can incorrectly
appear to be expired (or not valid yet).

Customer API
platform issue

Although unlikely it is possible that a problem with the Assure
infrastructure is causing the SSL certificate error. If you have
ruled out the other possibilities then contact Evotix support.

Connection
timeout

IP routing issue

A connection that times out can indicate a routing issue
between the server/platform generating the request and the
public internet. If this is suspected then you will need to get
help from your IT team.

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

. Possible
Condition Notes
cause

Usually firewalls will actively fail connections that aren’t
permitted. But sometimes they can configured in a ‘stealth’
mode where the connection cannot get through but no error
response is triggered. You will need to speak to the IT team
about whether this might be the case and get the firewall
amended to allow connections.

Firewall issue

Although unlikely it is possible that a problem with the Assure
infrastructure is causing connection timeout error. If you have
ruled out the other possibilities then contact Evotix support.

Customer API
platform issue

HTTP error response

If a connection between the tool/platform and the Customer APl is established then the
result of the API request will be an HTTP status code indicating the outcome of the
request.

e HTTP status codes 200-299 are defined as successful outcomes and any
response in this range should be interpreted as a successful completion of the API
request.

e HTTP status codes 300-399 are reserved for redirection requests, normally you
will never receive these codes as they are handled transparently by the HTTP client
library within your software/tool. If you do receive a 300-399 HTTP status code
your HTTP client library is probably misconfigured or your tool/platform does not
handle redirects in which case you will need to handle the redirection request in
your integration process.

e The OpenAPl schema for the Customer API defines the expected HTTP status
codes for each APl method. This should always be consulted first and where the
HTTP status is defined in the OpenAPI schema that definition should be used to
understand the meaning of the error.

The following table defines in general terms the meaning of the HTTP status codes that
might be encountered when requesting data from the Customer API.

IMPORTANT - The OpenAPI schema for the Customer API definitions for the HTTP status
codes take precedence over the general definitions in the following table.

© 2024 EVOTIX all rights reserved

https://github.com/Evotix/public-assure-customerapi
https://github.com/Evotix/public-assure-customerapi

EVOTIK

API Guide

HTTP
status
code

Meaning

Notes

400

Bad request

The most common cause of this error is the JSON supplied to the API
method not matching what is expected. This could be a missing mandatory
field, or a field whose value is to long (or to short), or a field who's value
doesn’t match the expected pattern. Validate the JSON data against the
OpenAPI schema to identify the problem.

This error can also occur for situations where the request is not valid given
the state of the data in the system. For example attempting to create a user
with an email address that is already in use. Or trying to create a user when
there is no licences remaining. For these situations the response body should
contain a message explaining what the problem is.

401

Authentication
failed

This is almost always caused by attempting to use an invalid APl key or not
having the APl key in the correct HTTP header. It can also occur if the APl URL
is for the wrong stack and hence the API key is not valid (as APl keys are only
valid for the stack in which they were created).

404

Not found

This usually occurs when wrong URL suffix is being used and therefore is
asking the API for a method which does not exist. Usually the response body
will contain a message explaining what the problem is. Another common
mistake which causes this error is using the wrong HTTP verb (e.g. using a
POST when the APl method expects a DELETE).

429

Too many
requests

The Customer APl implements throttling on a per customer basis. The
number of requests per second is limited to 10 (with a burst to 20 per
second). And the total number of requests per day is limited to 10,000.
Receiving this error indicates that one of these limits has been reached.

500 -
599

API platform
problem

Any error in the range 500-599 indicates a problem within the Assure
Customer API platform. If you receive this error repeatedly then take a copy
of the response message (if any) and contact Evotix support.

Retrying APl requests

All systems will encounter errors occasionally and as such it is strongly recommended to
implement strategies to try and handle these errors without aborting processing
altogether. A simple mechanism is to implement a retry pattern around each API request.
In simple terms this means whenever an error occurs the APl request is tried for a certain
number of times, typically with a short delay between attempts to give the error
condition a chance to clear. The Customer APl is designed to make retrying easy by
having idempotent APl methods. This means APl methods can be called more than once

© 2024 EVOTIX all rights reserved

https://github.com/Evotix/public-assure-customerapi

APl Guide
EVOTIX

with the same data and the outcome in terms of our response and effect will be the
same. This is very important as when an error occurs it is not always possible to be sure
whether the request was actually completed or not (e.g. when receiving a timeout).

Our recommendation is that all APl requests should be retried for ALL error conditions.
There is no harm in retrying API requests and there is rarely any benefit in giving up after
one error, even for errors that might appear to be permanent (most errors can be
transient). A suggested pattern is to make at least 3 attempts for an APl request with a
short pause (e.g. 10 seconds) between attempts. After 3 attempts the process should do
something to alert operators of the error condition (see the Alerting and logging section
below). After this the behaviour depends on the process, if there is a possibility that the
error is being caused by bad data then the process could quarantine the record being
processed before moving onto to try other records. There are lots of different strategies
that could be employed and it will be down to the developers of the process to
determine the most appropriate strategy that ensures that processing can resume
automatically and requiring as little operator intervention as possible.

The following activity diagram to shows an example retry handling flow.

make API request

l— &rror response? =f—
) yes

pause for 10 seconds

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

Alerting and logging

When problems do occur the first thing to do is let the system operators know so that
they can take action to diagnose and resolve the issue. Any process making requests to
the Customer API should have a means to raise an alert to the system operators if a
recurring error condition is detected, or if bad data is detected. Once system operators
have been alerted the first thing they will need to do is identify the root cause of the
problem, effective logging is absolutely key to enabling swift resolution.

Every log line should include the date and time (with millisecond accuracy) that the line
was generated. If the system/tool uses multiple threads or processes that write to the
same log line then the thread and/or process id should be included.

Never record the API key in the log files, nor any other secrets, passwords, or other
credentials.

The integration process should keep as detailed a log of its operation as is practical. At a
minimum the process should log:

« Before making each API request a log line should be generated recording the
reason for the APl request, the URL being requested, the HTTP method being used
and the system record or data entity that it relates to (e.g. if adding a user you
would include the username as it is the primary identifier of the user record). It is
very useful if the request content can also be logged.

e Inthe event that the APl request is successful a log line should be generated
confirming the successful completion including the system record or data entity
that it relates to (e.g. if adding a user you would include the username as it is the
primary identifier of the user record).

« Inthe event that the API fails a log line should be generated recording the failure.
This should include the URL that was requested, the HTTP method that was used.
The response body from the APl must be included and also the content of the
request body that was sent to the API request.

e Any exceptions that occur whilst calling the API should be caught and the details of
the exception recorded in a log line along with the URL that was requested, the
HTTP method that was used and the content of the request body.

Example logging

Here is an example of the logging from an integration process that is creating/updating
users from a queue of records. The log shows a successful request followed by a request

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

that fails (and gets retried). Note the raising of an alert to system operators when the
maximum retries is reached. This example process moves the failing record to the back
of the processing queue in case the error is being caused by the user data in the record.
This allows the process to continue trying to handle any other available user records that
need creating/updating, whilst the system operators investigate the failure.

2023-10-31 14:35:54.101 - Generated userPOSTRequest JSON for 'example.apiuser'
{\r\n \"username\": \"example.apiuser\",\r\n \"fullname\": \"Example
APIUser\",\r\n \"email\": \"example.apiuser@evotix.com\",\r\n
\"defaultOrgUnitExternalId\": \"REGION NW\"\r\n}

2023-10-31 14:35:54.102 - About to create/update user 'example.apiuser' using POST
https://api.uk2.sheassure.net/vl/user

2023-10-31 14:35:54.877 - 200 response. Successfully created/updated user
'example.apiuser'

2023-10-31 14:35:55.228 - Generated userPOSTRequest JSON for 'another.user' {\r\n
\"username\": \"another.user\",\r\n \"fullname\": \"Another User\",\r\n
\"email\": \"another.user@evotix.com\",\r\n \"defaultOrgUnitExternalId\":
\"REGION_ SW\"\r\n}

2023-10-31 14:35:55.510 - About to create/update user 'another.apiuser' using POST
https://api.uk2.sheassure.net/vl/user

2023-10-31 14:35:57.044 - 500 response. Failed to create/update user

'another.apiuser', response body {\r\n \"message": \"Internal server error\"},
request body {\r\n \"username\": \"another.user\",\r\n \"fullname\": \"Another
User\",\r\n \"email\": \"another.user@evotix.com\",\r\n

\"defaultOrgUnitExternalId\": \"REGION SW\"\r\n}

2023-10-31 14:35:57.200 - Pausing for 10 seconds. Retry count 1 for
'another.apiuser'

2023-10-31 14:36:07.821 - About to create/update user 'another.apiuser' using POST
https://api.uk2.sheassure.net/vl/user

2023-10-31 14:36:09.935 - 500 response. Failed to create/update user

'another.apiuser', response body {\r\n \"message": \"Internal server error\"},
request body {\r\n \"username\": \"another.user\",\r\n \"fullname\": \"Another
User\",\r\n \"email\": \"another.user@evotix.com\",\r\n

\"defaultOrgUnitExternalId\": \"REGION SW\"\r\n}

2023-10-31 14:36:10.020 - Pausing for 10 seconds. Retry count 2 for
'another.apiuser'

2023-10-31 14:36:20.131 - About to create/update user 'another.apiuser' using POST
https://api.uk2.sheassure.net/vl/user

2023-10-31 14:36:22.509 - 500 response. Failed to create/update user
'another.apiuser', response body {\r\n \"message": \"Internal server error\"},
request body {\r\n \"username\": \"another.user\",\r\n \"fullname\": \"Another

© 2024 EVOTIX all rights reserved

API Guide

EVOTIK

User\",\r\n \"email\": \"another.user@evotix.com\",\r\n
\"defaultOrgUnitExternalId\": \"REGION SW\"\r\n}

2023-10-31 14:36:22.764 - Retry count 3 for 'another.apiuser'. Raising alert and
moving 'another.apiuser' to the back of the processing queue.

© 2024 EVOTIX all rights reserved

